ImageVerifierCode 换一换
格式:PPTX , 页数:37 ,大小:2.75MB ,
文档编号:4287501      下载积分:25 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-4287501.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(晟晟文业)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(《统计学基础(英文版·第7版)》教学课件les7e--04-02-.pptx)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

《统计学基础(英文版·第7版)》教学课件les7e--04-02-.pptx

1、统计学基础(英文版第7版)教学课件les7e_ppt_04_02-(1)Chapter Outline 4.1 Probability Distributions 4.2 Binomial Distributions 4.3 More Discrete Probability Distributions.Section 4.2Binomial Distributions.Section 4.2 Objectives How to determine whether a probability experiment is a binomial experiment How to find bin

2、omial probabilities using the binomial probability formula How to find binomial probabilities using technology,formulas,and a binomial probability table How to construct and graph a binomial distribution How to find the mean,variance,and standard deviation of a binomial probability distribution.Bino

3、mial Experiments1.The experiment is repeated for a fixed number of trials,where each trial is independent of other trials.2.There are only two possible outcomes of interest for each trial.The outcomes can be classified as a success(S)or as a failure(F).3.The probability of a success,P(S),is the same

4、 for each trial.4.The random variable x counts the number of successful trials.Notation for Binomial ExperimentsSymbolDescriptionnThe number of times a trial is repeatedpThe probability of success in a single trialqThe probability of failure in a single trial(q=1 p)xThe random variable represents a

5、count of the number of successes in n trials:x=0,1,2,3,n.Example:Identifying and Understanding Binomial ExperimentsDecide whether each experiment is a binomial experiment.If it is,specify the values of n,p,and q,and list the possible values of the random variable x.If it is not,explain why.1.A certa

6、in surgical procedure has an 85%chance of success.A doctor performs the procedure on eight patients.The random variable represents the number of successful surgeries.Solution:Identifying and Understanding Binomial ExperimentsBinomial Experiment1.Each surgery represents a trial.There are eight surger

7、ies,and each one is independent of the others.2.There are only two possible outcomes of interest for each surgery:a success(S)or a failure(F).3.The probability of a success,P(S),is 0.85 for each surgery.4.The random variable x counts the number of successful surgeries.Solution:Identifying and Unders

8、tanding Binomial ExperimentsBinomial Experiment n=8(number of trials)p=0.85(probability of success)q=1 p=1 0.85=0.15(probability of failure)x=0,1,2,3,4,5,6,7,8(number of successful surgeries).Example:Identifying and Understanding Binomial ExperimentsDecide whether each experiment is a binomial exper

9、iment.If it is,specify the values of n,p,and q,and list the possible values of the random variable x.If it is not,explain why.2.A jar contains five red marbles,nine blue marbles,and six green marbles.You randomly select three marbles from the jar,without replacement.The random variable represents th

10、e number of red marbles.Solution:Identifying and Understanding Binomial ExperimentsNot a Binomial Experiment The probability of selecting a red marble on the first trial is 5/20.Because the marble is not replaced,the probability of success(red)for subsequent trials is no longer 5/20.The trials are n

11、ot independent and the probability of a success is not the same for each trial.Binomial Probability FormulaBinomial Probability Formula The probability of exactly x successes in n trials is!()()!xn xxn xnxnP xC p qp qnxxn=number of trialsp=probability of successq=1 p probability of failurex=number o

12、f successes in n trialsNote:number of failures is n x.Example:Finding a Binomial ProbabilityRotator cuff surgery has a 90%chance of success.The surgery is performed on three patients.Find the probability of the surgery being successful on exactly two patients.(Source:The Orthopedic Center of St.Loui

13、s).Solution:Finding a Binomial ProbabilityMethod 1:Draw a tree diagram and use the Multiplication Rule.81310000.243 Solution:Finding a Binomial ProbabilityMethod 2:Use the binomial probability formula.213!91(2)(32)!2!101081131001081310000.243P Binomial Probability DistributionBinomial Probability Di

14、stribution List the possible values of x with the corresponding probability of each.Example:Binomial probability distribution for Microfacture knee surgery:n=3,p=Use binomial probability formula to find probabilities.x0123P(x)0.0160.1410.4220.42234.Example:Constructing a Binomial DistributionIn a su

15、rvey,U.S.adults were asked to identify which social media platforms they use.The results are shown in the figure.Six adults who participated in the survey are randomly selected and asked whether they use the social media platform Facebook.Construct a binomial probability distribution for the number

16、of adults who respond yes.(Source:Pew Research).Solution:Constructing a Binomial Distributionp=0.68 and q=0.32n=6,possible values for x are 0,1,2,3,4,5 and 6.060660(0)0.680.321 0.680.320.001PC 151561(1)0.680.326 0.680.320.014PC 242462(2)0.680.3215 0.680.320.073PC 333363(3)0.680.3220 0.680.320.206PC

17、424264(4)0.680.3215 0.680.320.328PC 515165(5)0.680.326 0.680.320.279PC 606066(6)0.680.321 0.680.320.099PCSolution:Constructing a Binomial DistributionNotice in the table that all the probabilities are between 0 and 1 and that the sum of the probabilities is 1.Example:Finding a Binomial Probabilities

18、 Using TechnologyA survey found that 26%of U.S.adults believe there is no difference between secured and unsecured wireless networks.(A secured network uses barriers,such as firewalls and passwords,to protect information;an unsecured network does not.)You randomly select 100 adults.What is the proba

19、bility that exactly 35 adults believe there is no difference between secured and unsecured networks?Use technology to find the probability.(Source:University of Phoenix).Solution:Finding a Binomial Probabilities Using Technology.SolutionMinitab,Excel,StatCrunch,and the TI-84 Plus each have features

20、that allow you to find binomial probabilities.Try using these technologies.You should obtain results similar to these displays.Solution:Finding a Binomial Probabilities Using Technology.SolutionFrom these displays,you can see that the probability that exactly 35 adults believe there is no difference

21、 between secured and unsecured networks is about 0.012.Because 0.012 is less than 0.05,this can be considered an unusual event.Example:Finding Binomial Probabilities Using FormulasA survey found that 17%of U.S.adults say that Google News is a major source of news for them.You randomly select four ad

22、ults and ask them whether Google News is a major source of news for them.Find the probability that(1)exactly two of them respond yes,(2)at least two of them respond yes,and(3)fewer than two of them respond yes.(Source:Ipsos Public Affairs).Solution:Finding Binomial Probabilities Using Formulas.Solut

23、ion:Finding Binomial Probabilities Using FormulasSolution2.To find the probability that at least two adults will respond yes,find the sum of P(2),P(3),and P(4).Begin by using the binomial probability formula to write an expression for each probability.P(2)=4C2(0.17)2(0.83)2=6(0.17)2(0.83)2P(3)=4C3(0

24、.17)3(0.83)1=4(0.17)3(0.83)1P(4)=4C4(0.17)4(0.83)0=1(0.17)4(0.83)0.Solution:Finding Binomial Probabilities Using Formulas.Solution:Finding Binomial Probabilities Using Formulas.Example:Finding a Binomial Probability Using a TableAbout 10%of workers(ages 16 years and older)in the United States commut

25、e to their jobs by carpooling.You randomly select eight workers.What is the probability that exactly four of them carpool to work?Use a table to find the probability.(Source:American Community Survey)Solution:Binomial with n=8,p=0.1,x=4.Solution:Finding Binomial Probabilities Using a Table A portion

26、 of Table 2 is shownAccording to the table,the probability is 0.005.Solution:Finding Binomial Probabilities Using a Table You can check the result using technology.So,the probability that exactly four of the eight workers carpool to work is 0.005.Because 0.005 is less than 0.05,this can be considere

27、d an unusual event.Example:Graphing a Binomial DistributionSixty-two percent of cancer survivors are ages 65 years or older.You randomly select six cancer survivors and ask them whether they are 65 years of age or older.Construct a probability distribution for the random variable x.Then graph the di

28、stribution.(Source:National Cancer Institute)Solution:n=6,p=0.62,q=0.38 Find the probability for each value of x.Solution:Graphing a Binomial Distribution.Notice in the table that all the probabilities are between 0 and 1 and that the sum of the probabilities is 1.Solution:Graphing a Binomial Distri

29、butionHistogram:.From the histogram,you can see that it would be unusual for none or only one of the survivors to be age 65 years or older because both probabilities are less than 0.05.Mean,Variance,and Standard Deviation Mean:=np Variance:2=npq Standard Deviation:npq.Example:Mean,Variance,and Stand

30、ard DeviationIn Pittsburgh,Pennsylvania,about 56%of the days in a year are cloudy.Find the mean,variance,and standard deviation for the number of cloudy days during the month of June.Interpret the results and determine any unusual values.(Source:National Climatic Data Center)Solution:n=30,p=0.56,q=0

31、.44Mean:=np=300.56=16.8Variance:2=npq=300.560.44 7.4Standard Deviation:30 0.56 0.442.7npq.Solution:Mean,Variance,and Standard Deviation=16.8 2 7.4 2.7 On average,there are 16.8 cloudy days during the month of June.The standard deviation is about 2.7 days.Values that are more than two standard deviations from the mean are considered unusual.16.8 2(2.7)=11.4;A June with 11 cloudy days or less would be unusual.16.8+2(2.7)=22.2;A June with 23 cloudy days or more would also be unusual.

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|