ImageVerifierCode 换一换
格式:PPTX , 页数:28 ,大小:1.98MB ,
文档编号:4287502      下载积分:22 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-4287502.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(晟晟文业)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(《统计学基础(英文版·第7版)》课件les7e-ppt-ADA-0703.pptx)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

《统计学基础(英文版·第7版)》课件les7e-ppt-ADA-0703.pptx

1、统计学基础(英文版第7版)课件les7e_ppt_ADA_0703Chapter Outline 7.1 Introduction to Hypothesis Testing 7.2 Hypothesis Testing for the Mean known 7.3 Hypothesis Testing for the Mean Unknown 7.4 Hypothesis Testing for Proportions 7.5 Hypothesis Testing for Variance and Standard DeviationSection 7.3Hypothesis Testing

2、 for the Mean UnknownSection 7.3 Objectives Find critical values in a t-distribution Use the t-test to test a mean when is not known Use technology to find P-values and use them with a t-test to test a mean when is not knownFinding Critical Values in a t-Distribution(1 of 2)1.Identify the level of s

3、ignificance.2.Identify the degrees of freedom d.f.1n.3.Find the critical value(s)using Table 5 in Appendix B in the row with 1ndegrees of freedom.If thehypothesis test isa.left-tailed,use“One Tail,”column with anegative sign,b.right-tailed,use“One Tail,”column with apositive sign,c.two-tailed,use“Tw

4、o Tails,”column with anegative and a positive sign.Finding Critical Values in a t-Distribution(2 of 2)Left-Tailed Test Right-Tailed TestTwo-Tailed TestExample:Finding Critical Values for t(1 of 3)Find the critical value 0tfor a left-tailed test given 0.05and 21n.Solution:The degrees of freedom are 2

5、1 120d.f.1n .Use Table 5.Look at 0.05in the“OneTail,”column.Because the test is left-tailed,the critical value is negative.So,01.725t .5Level of SignificanceExample:Finding Critical Values for t(2 of 3)Find the critical value 0tfor a right-tailed test given 0.01and 17n.Solution:The degrees of freedo

6、m are 17 116d.f.1 n.Use Table 5.Look at 0.01in the“OneTail,”column.Because the test is right-tailed,the critical value is positive.So,02.583t.1Level of SignificanceExample:Finding Critical Values for t(3 of 3)Find the critical value 0tand 0tfor a two-tailed testgiven 0.10and 26n.Solution:The degrees

7、 of freedom are 26 125d.f.1 n.Look at 0.10in the“TwoTail,”column.Because the test is two-tailed,one critical value is negative.and one is positive.01.708 tand 01.708t.10Level of SignificanceSolution:Finding Critical Values for tFind the critical values 0tand 0tfor a two-tailed testgiven 0.10and 26n.

8、Solution:You can check your answer using technology.t-Test for a Mean mu(sigma Unknown)t-Test for a Mean The t-test for a mean is a statistical test for a populationmean.The test statistic is the sample mean x.Thestandardized test statistic is xtsnwhen these conditions are met.1.The sample is random

9、.2.At least one of the following is true:The population is normally distributed or 30n.The degrees of freedom are d.f.1n.Using the t-Test for Mean mu(sigma Unknown)(1 of 3)In WordsIn Symbols1.Verify that is not known,thesample is random,and either the population is normally distributed or 30n.2.Stat

10、e the claim mathematically and verbally.Identify the null and alternative hypotheses.State 0Hand aH.3.Specify the level of significance.Identify.Using the t-Test for Mean mu(sigma Unknown)(2 of 3)In WordsIn Symbols4.Identify the degrees of freedom.d.f.1n5.Determine the critical value(s)Use Table 5 i

11、n Appendix A.6.Determine the rejection region(s).7.Find the standardized test statistic and sketch the sampling distribution.xtsnUsing the t-Test for Mean mu(sigma Unknown)(3 of 3)In WordsIn Symbols8.Make a decision to reject or fail to reject the null hypothesis.If t is in the rejection region,reje

12、ct 0H.Otherwise,fail to reject 0H.9.Interpret the decision in the context of the original claim.Example:Hypothesis Testing Using a Rejection RegionA used car dealer says that the mean price of used cars sold in the last 12 months is at least$21,000.Yoususpect this claim is incorrect and find that a

13、random sample of 14 used cars sold in the last 12 months has a mean price of$19,189and a standard deviation of$2950.Is there enough evidence to reject the dealersclaim at=0.05?Assume the population is normallydistributed.(Adapted from E)Solution:Hypothesis Testing Using a Rejection Region(1 of 3)Sol

14、ution:Because is unknown,the sample is random,and thepopulation is normally distributed,you can use the t-test.The claim is“the mean price is at least$21,000.”So,the null and alternative hypotheses are 0$21,000H(Claim)and$21,000aH.Solution:Hypothesis Testing Using a Rejection Region(2 of 3)The test

15、is a left-tailed test,the level of significance is 0.05,and the degrees of freedom are d.f.14 113 So,using Table 5,the critical value is 01.771t .Therejection region is 1.771t .The standardized teststatistic is 19,18921,000295014xtsnAssume 21,000.2.297.Solution:Hypothesis Testing Using a Rejection R

16、egion(3 of 3)The figure shows the location of the rejection region and the standardized test statistic t.Because t is in the rejection region,you reject the null hypothesis.There is enough evidence at the 5level of significanceto reject the claim that the mean price of used cars sold in the last 12

17、months is at least$21,000.5Level of SignificanceExample:Hypothesis Testing Using Rejection RegionsAn industrial company claims that the mean pH level of the water in a nearby river is 6.8.You randomly select 39 water samples and measure the pH of each.The sample mean and standard deviation are 6.7 a

18、nd 0.35,respectively.Is there enough evidence to reject the companys claim at 0.05?Solution:Hypothesis Testing Using Rejection Regions(1 of 4)Solution:Because is unknown,the sample is random,and 3930n,you can use the t-test.The claim is“themean pH level is 6.8.”So,the null and alternative hypotheses

19、 are 06.8H(Claim)and 6.8aH.Solution:Hypothesis Testing Using Rejection Regions(2 of 4)The test is a two-tailed test,the level of significance is 0.05,and the degrees of freedom are d.f.3938.So,using Table 5,the critical valuesare 02.024t and 02.024t.The rejection regionsare 2.024t and 2.024t.The sta

20、ndardized teststatistic is6.76.80.3539xtsnAssume 6.8.1.784.Solution:Hypothesis Testing Using Rejection Regions(3 of 4)The figure shows the location of the rejection regions and the standardized test statistic t.Because t is not in the rejection region,you fail to reject the null hypothesis.5Level of

21、 SignificanceSolution:Hypothesis Testing Using Rejection Regions(4 of 4)You can confirm this decision using technology,as shown.Note that the standardized statistic t differs from the one found using Table 5 due to rounding.There is not enough evidence at the 5level ofsignificance to reject the clai

22、m that the mean pH level is 6.8.Example:Using P-values with t-Tests(1 of 4)A department of motor vehicles office claims that the mean wait time is less than 14 minutes.A random sample of 10 people has a mean wait time of 13 minutes with a standard deviation of 3.5 minutes.At 0.10,test the offices cl

23、aim.Assume the populationis normally distributed.Example:Using P-values with t-Tests(2 of 4)Because is unknown,the sample is random,and thepopulation is normally distributed,you can use the t-test.The claim is“the mean wait time is less than 14 minutes.”So,the null and alternative hypotheses are 014

24、minutesHand 14minutesaH.(Claim)Example:Using P-values with t-Tests(3 of 4)The TI-84 Plus display at the far left shows how to set up the hypothesis test.The two displays on the right show the possible results,depending on whether you select Calculate or Draw.TI-84 PLUST-TestInpt:Data Stats014x 13Sx:

25、3.5n:10000:Calculate DrawTI-84 PlusT-Test14t.9035079029 p.1948994027x13Sx3.5n10Example:Using P-values with t-Tests(4 of 4)From the displays,you can see that 0.1949P.Because the P-value is greater than 0.10,you failto reject the null hypothesis.There is not enough evidence at the 10level ofsignificance to support the offices claim that the mean wait time is less than 14 minutes.

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|