1、第十二讲 概率统计2022-11-262022-11-261第十二讲 概率统计随机变量的累积概率值(分布函数值)12.4 随机变量的逆累积分布函数 12.5 随机变量的数字特征2022-11-2621 二项分布的随机数据的产生命令 参数为N,P的二项随机数据函数 binornd格式 R=binornd(N,P)%N、P为二项分布的两个参数,返回服从参数为N、P的二项分布的随机数,N、P大小相同。R=binornd(N,P,m,n)%m,n分别表示R的行数和列数2022-11-263例 R=binornd(10,0.5)R=3 R=binornd(10,0.5,1,6)R=8 1 3 7 6 4
2、 R=binornd(10,0.5,2,3)R=7 5 8 6 5 6n=10:10:60;r1=binornd(n,1./n)r1=2 1 0 1 1 22022-11-2642正态分布的随机数据的产生命令 参数为、的正态分布的随机数据函数 normrnd格式 R=normrnd(MU,SIGMA)%返回均值为MU,标准差为SIGMA的正态分布的随机数据,R可以是向量或矩阵。R=normrnd(MU,SIGMA,m,n)%m,n分别表示R的行数和列数2022-11-265例n1=normrnd(1:6,1./(1:6)n1=2.1650 2.3134 3.0250 4.0879 4.8607
3、 6.2827n2=normrnd(0,1,1 5)n2=0.0591 1.7971 0.2641 0.8717 -1.4462n3=normrnd(1 2 3;4 5 6,0.1,2,3)%mu为均值矩阵n3=0.9299 1.9361 2.9640 4.1246 5.0577 5.9864 R=normrnd(10,0.5,2,3)%mu为10,sigma为0.5的2行3列个正态随机数R=9.7837 10.0627 9.4268 9.1672 10.1438 10.59552022-11-266 函数名函数名调用形式调用形式注注 释释Unifrndunifrnd(A,B,m,n)A,B上
4、均匀分布上均匀分布(连续连续)随机数随机数Unidrndunidrnd(N,m,n)均匀分布(离散)随机数均匀分布(离散)随机数Exprndexprnd(Lambda,m,n)参数为参数为Lambda的指数分布随机数的指数分布随机数Normrndnormrnd(MU,SIGMA,m,n)参数为参数为MU,SIGMA的正态分布随机数的正态分布随机数chi2rndchi2rnd(N,m,n)自由度为自由度为N的卡方分布随机数的卡方分布随机数Trndtrnd(N,m,n)自由度为自由度为N的的t分布随机数分布随机数2022-11-267Frndfrnd(N1,N2,m,n)第一自由度为第一自由度为N
5、1,第二自由度为第二自由度为N2的的F分布随机分布随机数数gamrndgamrnd(A,B,m,n)参数为参数为A,B的的gamma分布随机数分布随机数betarndbetarnd(A,B,m,n)参数为参数为A,B的的beta分布随机数分布随机数lognrndlognrnd(MU,SIGMA,m,n)参数为参数为MU,SIGMA的对数正态分布随机数的对数正态分布随机数nbinrndnbinrnd(R,P,m,n)参数为参数为R,P的负二项式分布随机数的负二项式分布随机数ncfrndncfrnd(N1,N2,delta,m,n)参数为参数为N1,N2,delta的非中心的非中心F分布随机数分布
6、随机数nctrndnctrnd(N,delta,m,n)参数为参数为N,delta的非中心的非中心t分布随机数分布随机数ncx2rndncx2rnd(N,delta,m,n)参数为参数为N,delta的非中心卡方分布随机数的非中心卡方分布随机数raylrndraylrnd(B,m,n)参数为参数为B的瑞利分布随机数的瑞利分布随机数weibrndweibrnd(A,B,m,n)参数为参数为A,B的韦伯分布随机数的韦伯分布随机数binorndbinornd(N,P,m,n)参数为参数为N,p的二项分布随机数的二项分布随机数georndgeornd(P,m,n)参数为参数为 p的几何分布随机数的几何
7、分布随机数hygerndhygernd(M,K,N,m,n)参数为参数为 M,K,N的超几何分布随机数的超几何分布随机数Poissrndpoissrnd(Lambda,m,n)参数为参数为Lambda的泊松分布随机数的泊松分布随机数2022-11-2684.通用函数求各分布的随机数据命令 求指定分布的随机数函数 random格式 y=random(name,A1,A2,A3,m,n)%name的取值见上表;A1,A2,A3为分布的参数;m,n指定随机数的行和列2022-11-269产生12(3行4列)个均值为2,标准差为0.3的正态分布随机数 y=random(norm,2,0.3,3,4)y
8、=2.3567 2.0524 1.8235 2.0342 1.9887 1.9440 2.6550 2.3200 2.0982 2.2177 1.9591 2.01782022-11-26101.通用函数计算概率密度函数值命令 通用函数计算概率密度函数值函数 pdf格式 Y=pdf(name,K,A)Y=pdf(name,K,A,B)Y=pdf(name,K,A,B,C)说明 返回在X=K处、参数为A、B、C的概率密度值,对于不同的分布,参数个数是不同;name为分布函数名,其取值如下表;2022-11-2611name的取值的取值函数说明函数说明beta或或BetaBeta分布分布bino或
9、或Binomial二项分布二项分布chi2或或Chisquare卡方分布卡方分布exp或或Exponential指数分布指数分布f或或FF分布分布gam或或GammaGAMMA分布分布geo或或Geometric几何分布几何分布hyge或或Hypergeometric超几何分布超几何分布logn或或Lognormal对数正态分布对数正态分布2022-11-2612nbin或或Negative Binomial负二项式分布负二项式分布ncf或或Noncentral F非中心非中心F分布分布nct或或Noncentral t非中心非中心t分布分布ncx2或或Noncentral Chi-squar
10、e非中心卡方分布非中心卡方分布norm或或Normal正态分布正态分布poiss或或Poisson泊松分布泊松分布rayl或或Rayleigh瑞利分布瑞利分布t或或TT分布分布unif或或Uniform均匀分布均匀分布unid或或Discrete Uniform离散均匀分布离散均匀分布weib或或WeibullWeibull分布分布2022-11-2613例如二项分布:设一次试验,事件A发生的概率为p,那么,在n次独立重复试验中,事件A恰好发生K次的概率P_K为:P_K=PX=K=pdf(bino,K,n,p)例 计算正态分布N(0,1)的随机变量X在点0.6578的密度函数值。解:pdf(n
11、orm,0.6578,0,1)ans=0.32132022-11-2614例 自由度为8的卡方分布,在点2.18处的密度函数值。解:pdf(chi2,2.18,8)ans=0.03632022-11-2615专用函数计算概率密度函数值命令 二项分布的概率值函数 binopdf格式 binopdf(k,n,p)%等同于pdf(bino,k,n,p),p 每次试验事件A发生的概率;K事件A发生K次;n试验总次数命令 泊松分布的概率值函数 poisspdf格式 poisspdf(k,Lambda)%等同于pdf(poiss,k,lambda)命令.2022-11-2616命令 正态分布的概率值函数
12、normpdf(K,mu,sigma)%计算参数为=mu,=sigma的正态分布密度函数在K处的值专用函数计算概率密度函数列表如下表3。2022-11-2617函数名函数名调用形式调用形式注注 释释Unifpdfunifpdf(x,a,b)a,b上均匀分布上均匀分布(连续连续)概率密度在概率密度在X=x处的函数值处的函数值unidpdfUnidpdf(x,n)均匀分布(离散)概率密度函数值均匀分布(离散)概率密度函数值Exppdfexppdf(x,Lambda)参数为参数为Lambda的指数分布概率密度函数值的指数分布概率密度函数值normpdfnormpdf(x,mu,sigma)参数为参数
13、为mu,sigma的正态分布概率密度函数值的正态分布概率密度函数值chi2pdfchi2pdf(x,n)自由度为自由度为n的卡方分布概率密度函数值的卡方分布概率密度函数值Tpdftpdf(x,n)自由度为自由度为n的的t分布概率密度函数值分布概率密度函数值Fpdffpdf(x,n1,n2)第一自由度为第一自由度为n1,第二自由度为第二自由度为n2的的F分布概率密度函分布概率密度函数值数值gampdfgampdf(x,a,b)参数为参数为a,b的的gamma分布概率密度函数值分布概率密度函数值betapdfbetapdf(x,a,b)参数为参数为a,b的的beta分布概率密度函数值分布概率密度函
14、数值lognpdflognpdf(x,mu,sigma)参数为参数为mu,sigma的对数正态分布概率密度函数值的对数正态分布概率密度函数值2022-11-2618nbinpdfnbinpdf(x,R,P)参数为参数为R,P的负二项式分布概率密度函数值的负二项式分布概率密度函数值ncfpdfncfpdf(x,n1,n2,delta)参数为参数为n1,n2,delta的非中心的非中心F分布概率密度函数值分布概率密度函数值nctpdfnctpdf(x,n,delta)参数为参数为n,delta的非中心的非中心t分布概率密度函数值分布概率密度函数值ncx2pdfncx2pdf(x,n,delta)参
15、数为参数为n,delta的非中心卡方分布概率密度函数值的非中心卡方分布概率密度函数值raylpdfraylpdf(x,b)参数为参数为b的瑞利分布概率密度函数值的瑞利分布概率密度函数值weibpdfweibpdf(x,a,b)参数为参数为a,b的韦伯分布概率密度函数值的韦伯分布概率密度函数值binopdfbinopdf(x,n,p)参数为参数为n,p的二项分布的概率密度函数值的二项分布的概率密度函数值geopdfgeopdf(x,p)参数为参数为 p的几何分布的概率密度函数值的几何分布的概率密度函数值hygepdfhygepdf(x,M,K,N)参数为参数为 M,K,N的超几何分布的概率密度函
16、数值的超几何分布的概率密度函数值poisspdfpoisspdf(x,Lambda)参数为参数为Lambda的泊松分布的概率密度函数值的泊松分布的概率密度函数值2022-11-2619例 绘制卡方分布密度函数在自由度分别为1、5、15的图形 x=0:0.1:30;y1=chi2pdf(x,1);plot(x,y1,:)hold on y2=chi2pdf(x,5);plot(x,y2,+)y3=chi2pdf(x,15);plot(x,y3,o)axis(0,30,0,0.2)%指定显示的图形区域2022-11-26202、随机变量的概率密度计算2022-11-2621常见分布的密度函数作图1
17、二项分布例x=0:10;y=binopdf(x,10,0.5);plot(x,y,+)2卡方分布例 x=0:0.2:15;y=chi2pdf(x,4);plot(x,y)2022-11-2622随机变量的累积概率值1 通用函数计算累积概率值命令 通用函数cdf用来计算随机变量的概率之和(累积概率值)函数 cdf格式 cdf(name,k,a)cdf(name,k,a,b)cdf(name,k,a,b,c)说明:返回以name为分布、随机变量XK的概率之和的累积概率值,name的取值见常见分布函数表2022-11-2623随机变量的累积概率值例 求标准正态分布随机变量X落在区间(-,0.4)内的
18、概率(该值就是概率统计教材中的附表:标准正态数值表)。cdf(norm,0.4,0,1)ans=0.6554例 求自由度为16的卡方分布随机变量落在0,6.91内的概率 cdf(chi2,6.91,16)ans=0.02502022-11-2624随机变量的累积概率值1.2 专用函数计算累积概率值2.命令 二项分布的累积概率值函数 binocdf格式 binocdf(k,n,p)%n为试验总次数,p为每次试验事件A发生的概率,k为n次试验中事件A发生的次数,该命令返回n次试验中事件A恰好发生k次的概率。2022-11-2625随机变量的累积概率值命令 正态分布的累积概率值函数 normcdf格
19、式 normcdf()%返回 的值,mu、sigma为正态分布的两个参数例 设XN(3,22)求p(2x5),p(-4x2),p(x3)p1=normcdf(5,3,2)-normcdf(2,3,2)p1=0.5328()()xF xp t dt2022-11-2626随机变量的累积概率值p2=normcdf(10,3,2)-normcdf(-4,3,2)p2=0.9995p3=1-normcdf(2,3,2)+normcdf(-2,3,2)p3=0.6977p4=1-normcdf(3,3,2)p4=0.5000专用函数计算累积概率值函数列表如下表 2022-11-2627函数名函数名调用形
20、式调用形式注注 释释unifcdfunifcdf(x,a,b)a,b上均匀分布上均匀分布(连续连续)累积分布函数值累积分布函数值 F(x)=PXxunidcdfunidcdf(x,n)均匀分布(离散)累积分布函数值均匀分布(离散)累积分布函数值 F(x)=PXx expcdfexpcdf(x,Lambda)参数为参数为Lambda的指数分布累积分布函数值的指数分布累积分布函数值 F(x)=PXxnormcdfn o r m c d f(x,m u,sigma)参数为参数为mu,sigma的正态分布累积分布函数值的正态分布累积分布函数值 F(x)=PXxchi2cdfchi2cdf(x,n)自由
21、度为自由度为n的卡方分布累积分布函数值的卡方分布累积分布函数值 F(x)=PXxtcdftcdf(x,n)自由度为自由度为n的的t分布累积分布函数值分布累积分布函数值 F(x)=PXxfcdffcdf(x,n1,n2)第一自由度为第一自由度为n1,第二自由度为第二自由度为n2的的F分布累积分布函数值分布累积分布函数值gamcdfgamcdf(x,a,b)参数为参数为a,b的的gamma分布累积分布函数值分布累积分布函数值 F(x)=PXxbetacdfbetacdf(x,a,b)参数为参数为a,b的的beta分布累积分布函数值分布累积分布函数值 F(x)=PXxlogncdflogncdf(x
22、,mu,sigma)参数为参数为mu,sigma的对数正态分布累积分布函数值的对数正态分布累积分布函数值2022-11-2628nbincdfnbincdf(x,R,P)参数为参数为R,P的负二项式分布概累积分布函数值的负二项式分布概累积分布函数值 F(x)=PXxncfcdfncfcdf(x,n1,n2,delta)参数为参数为n1,n2,delta的非中心的非中心F分布累积分布函数值分布累积分布函数值 nctcdfnctcdf(x,n,delta)参数为参数为n,delta的非中心的非中心t分布累积分布函数值分布累积分布函数值 F(x)=PXxncx2cdfncx2cdf(x,n,delt
23、a)参数为参数为n,delta的非中心卡方分布累积分布函数值的非中心卡方分布累积分布函数值raylcdfraylcdf(x,b)参数为参数为b的瑞利分布累积分布函数值的瑞利分布累积分布函数值 F(x)=PXxweibcdfweibcdf(x,a,b)参数为参数为a,b的韦伯分布累积分布函数值的韦伯分布累积分布函数值 F(x)=PXxbinocdfbinocdf(x,n,p)参数为参数为n,p的二项分布的累积分布函数值的二项分布的累积分布函数值 F(x)=PXxgeocdfgeocdf(x,p)参数为参数为 p的几何分布的累积分布函数值的几何分布的累积分布函数值 F(x)=PXxhygecdfh
24、ygecdf(x,M,K,N)参数为参数为 M,K,N的超几何分布的累积分布函数值的超几何分布的累积分布函数值poisscdfpoisscdf(x,Lambda)参数为参数为Lambda的泊松分布的累积分布函数值的泊松分布的累积分布函数值 F(x)=PXx2022-11-262912.4 随机变量的逆累积分布函数MATLAB中的逆累积分布函数是已知 求x。逆累积分布函数值的计算有两种方法1 通用函数计算逆累积分布函数值命令 icdf 计算逆累积分布函数格式 说明 返回分布为name,参数为a1,a2,a3,累积概率值为P的临界值,这里name与前面表相同。xXP)x(F)a,a,a,P,ena
25、m(icdf3212022-11-263012.4 随机变量的逆累积分布函数例 1 在 标 准 正 态 分 布 表 中,若 已 知p(x)=0.975,求x解:x=icdf(norm,0.975,0,1)x=1.96002022-11-263112.4 随机变量的逆累积分布函数2 专用函数-inv计算逆累积分布函数命令 正态分布逆累积分布函数函数 norminv格式 X=norminv(p,mu,sigma)%p为累积概率值,mu为均值,sigma为标准差,X为临界值,满足:p=PXx。例2 设XN(3,22),确定c使得p(xc)=p(xc).解:由已知得p(xc=norminv(0.5,3
26、,2)c=32022-11-2632函数名函数名调用形式调用形式注注 释释unifinvx=unifinv(p,a,b)均匀分布均匀分布(连续连续)逆累积分布函数(逆累积分布函数(P=PXx,求求x)unidinvx=unidinv(p,n)均匀分布(离散)逆累积分布函数,均匀分布(离散)逆累积分布函数,x为临界值为临界值expinvx=expinv(p,Lambda)指数分布逆累积分布函数指数分布逆累积分布函数norminvx=norminv(x,mu,sigma)正态分布逆累积分布函数正态分布逆累积分布函数chi2invx=chi2inv(x,n)卡方分布逆累积分布函数卡方分布逆累积分布函
27、数tinvx=tinv(x,n)t分布累积分布函数分布累积分布函数finvx=finv(x,n1,n2)F分布逆累积分布函数分布逆累积分布函数gaminvx=gaminv(x,a,b)gamma分布逆累积分布函数分布逆累积分布函数betainvx=betainv(x,a,b)beta分布逆累积分布函数分布逆累积分布函数logninvx=logninv(x,mu,sigma)对数正态分布逆累积分布函数对数正态分布逆累积分布函数nbininvx=nbininv(x,R,P)负二项式分布逆累积分布函数负二项式分布逆累积分布函数2022-11-2633ncfinvx=ncfinv(x,n1,n2,de
28、lta)非中心非中心F分布逆累积分布函数分布逆累积分布函数nctinvx=nctinv(x,n,delta)非中心非中心t分布逆累积分布函数分布逆累积分布函数ncx2invx=ncx2inv(x,n,delta)非中心卡方分布逆累积分布函数非中心卡方分布逆累积分布函数raylinvx=raylinv(x,b)瑞利分布逆累积分布函数瑞利分布逆累积分布函数weibinvx=weibinv(x,a,b)韦伯分布逆累积分布函数韦伯分布逆累积分布函数binoinvx=binoinv(x,n,p)二项分布的逆累积分布函数二项分布的逆累积分布函数geoinvx=geoinv(x,p)几何分布的逆累积分布函数
29、几何分布的逆累积分布函数hygeinvx=hygeinv(x,M,K,N)超几何分布的逆累积分布函数超几何分布的逆累积分布函数poissinvx=poissinv(x,Lambda)泊松分布的逆累积分布函数泊松分布的逆累积分布函数2022-11-263412.5 随机变量的数字特征1 平均值、中值命令 利用mean求算术平均值格式 mean(X)%X为向量,返回X中各元素的平均值 mean(A)%A为矩阵,返回A中各列元素的平均值构成的向量2022-11-263512.5 随机变量的数字特征命令 忽略NaN计算算术平均值格式 nanmean(X)%X为向量,返回X中除NaN外元素的算术平均值。
30、nanmean(A)%A为矩阵,返回A中各列除NaN外元素的算术平均值向量。A=1 2 3;nan 5 2;3 7 nan;nanmean(A)ans=2.0000 4.6667 2.50002022-11-263612.5 随机变量的数字特征命令 利用median计算中值(中位数)格式 median(X)%X为向量,返回X中各元素的中位数。median(A)%A为矩阵,返回A中各列元素的中位数构成的向量。2022-11-263712.5 随机变量的数字特征命令 忽略NaN计算中位数格式 nanmedian(X)%X为向量,返回X中除NaN外元素的中位数。nanmedian(A)%A为矩阵,返
31、回A中各列除NaN外元素的中位数向量。命令 利用geomean计算几何平均数格式 M=geomean(X)%X为向量,返回X中各元素的几何平均数。M=geomean(A)%A为矩阵,返回A中各列元素的几何平均数构成的向量。2022-11-263812.5 随机变量的数字特征说明 几何平均数的数学含义是,其中 :样本数据非负,主要用于对数正态分布。例 B=1 3 4 5;M=geomean(B)M=2.7832 A=1 3 4 5;2 3 4 6;1 3 1 5;M=geomean(A)M=1.2599 3.0000 2.5198 5.3133n1)x(Mn1ii2022-11-263912.5
32、 随机变量的数字特征2 数据比较命令 排序格式 Y=sort(X)%X为向量,返回X按由小到大排序后的向量。Y=sort(A)%A为矩阵,返回A的各列按由小到大排序后的矩阵。Y,I=sort(A)%Y为排序的结果,I中元素表示Y中对应元素在A中位置。2022-11-264012.5 随机变量的数字特征说明 若X为复数,则通过|X|排序。例4-36 A=1 2 3;4 5 2;3 7 0;sort(A)Y,I=sort(A)2022-11-264112.5 随机变量的数字特征命令 求最大值与最小值之差函数 range格式 Y=range(X)%X为向量,返回X中的最大值与最小值之差。Y=rang
33、e(A)%A为矩阵,返回A中各列元素的最大值与最小值之差。例38 A=1 2 3;4 5 2;3 7 0;Y=range(A)Y=3 5 32022-11-264212.5 随机变量的数字特征3 期望命令 计算样本均值函数 mean格式 用法与前面一样例4-39 随机抽取6个滚珠测得直径如下:14.70 15.21 14.90 14.91 15.32 15.32试求样本平均值解:X=14.70 15.21 14.90 14.91 15.32 15.32;mean(X)%计算样本均值ans=15.06002022-11-264312.5 随机变量的数字特征4 方差命令 求样本方差函数 var格式
34、 D=var(X)%,若X为向量,则返回向量的样本方差。n1i2i2)Xx(1n1s2022-11-264412.5 随机变量的数字特征D=var(A)%A为矩阵,则D为A的列向量的样本方差构成的行向量。命令 求标准差函数 std 格式 std(X)%返回向量(矩阵)X的样本标准差。2022-11-264512.5 随机变量的数字特征命令 忽略NaN的标准差函数 nanstd格式 y=nanstd(X)%若X为含有元素NaN的向量,则返回除NaN外的元素的标准差,若X为含元素NaN的矩阵,则返回各列除NaN外的标准差构成的向量。2022-11-264612.5 随机变量的数字特征5常见分布的期
35、望和方差命令 均匀分布(连续)的期望和方差函数 unifstat格式 M,V=unifstat(A,B)%A、B为标量时,就是区间上均匀分布的期望和方差,A、B也可为向量或矩阵,则M、V也是向量或矩阵。命令 正态分布的期望和方差函数 normstat格式 M,V=normstat(MU,SIGMA)%MU、SIGMA可为标量也可为向量或矩阵,则M=MU,V=SIGMA2。2022-11-264712.5 随机变量的数字特征命令 二项分布的均值和方差函数 binostat格式 M,V=binostat(N,P)%N,P为二项分布的两个参数,可为标量也可为向量或矩阵。例46n=logspace(1
36、,5,5)n=10 100 1000 10000 100000M,V=binostat(n,1./n)M=1 1 1 1 1V=0.9000 0.9900 0.9990 0.9999 1.00002022-11-2648函数名函数名调用形式调用形式注注 释释unifstatM,V=unifstat(a,b)均匀分布均匀分布(连续连续)的期望和方差,的期望和方差,M为期望,为期望,V为方差为方差unidstatM,V=unidstat(n)均匀分布(离散)的期望和方差均匀分布(离散)的期望和方差expstatM,V=expstat(p,Lambda)指数分布的期望和方差指数分布的期望和方差nor
37、mstatM,V=normstat(mu,sigma)正态分布的期望和方差正态分布的期望和方差chi2statM,V=chi2stat(x,n)卡方分布的期望和方差卡方分布的期望和方差tstatM,V=tstat(n)t分布的期望和方差分布的期望和方差fstatM,V=fstat(n1,n2)F分布的期望和方差分布的期望和方差gamstatM,V=gamstat(a,b)gamma分布的期望和方差分布的期望和方差betastatM,V=betastat(a,b)beta分分布的期望和方差布的期望和方差lognstatM,V=lognstat(mu,sigma)对数正态分布的期望和方差对数正态分
38、布的期望和方差2022-11-2649nbinstatM,V=nbinstat(R,P)负二项式分布的期望和方差负二项式分布的期望和方差ncfstatM,V=ncfstat(n1,n2,delta)非中心非中心F分布的期望和方差分布的期望和方差nctstatM,V=nctstat(n,delta)非中心非中心t分布的期望和方差分布的期望和方差ncx2statM,V=ncx2stat(n,delta)非中心卡方分布的期望和方差非中心卡方分布的期望和方差raylstatM,V=raylstat(b)瑞利分布的期望和方差瑞利分布的期望和方差WeibstatM,V=weibstat(a,b)韦伯分布的
39、期望和方差韦伯分布的期望和方差BinostatM,V=binostat(n,p)二项分布的期望和方差二项分布的期望和方差GeostatM,V=geostat(p)几何分布的期望和方差几何分布的期望和方差hygestatM,V=hygestat(M,K,N)超几何分布的期望和方差超几何分布的期望和方差PoisstatM,V=poisstat(Lambda)泊松分布的期望和方差泊松分布的期望和方差2022-11-265012.5 随机变量的数字特征6 协方差与相关系数命令 协方差函数 cov格式 cov(X)%求向量X的协方差 cov(A)%求矩阵A的协方差矩阵,该协方差矩阵的对角线元素是A的各列的方差,即:var(A)=diag(cov(A)。cov(X,Y)%X,Y为等长列向量,等同于 cov(X Y)。2022-11-265112.5 随机变量的数字特征命令 相关系数函数 corrcoef格式 corrcoef(X,Y)%返回列向量X,Y的相关系数,等同于corrcoef(X Y)。corrcoef(A)%返回矩阵A的列向量的相关系数矩阵2022-11-2652
侵权处理QQ:3464097650--上传资料QQ:3464097650
【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。