ImageVerifierCode 换一换
格式:PPT , 页数:75 ,大小:579.48KB ,
文档编号:4305430      下载积分:28 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-4305430.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(晟晟文业)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(统计学原理复旦课件.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

统计学原理复旦课件.ppt

1、统计学原理(第三版)第四章第四章 动态数列 第一节第一节 动态数列的编制动态数列的编制 一、动态数列的概念一、动态数列的概念动动态数列又称时间数列。它是将某种统计指标,或态数列又称时间数列。它是将某种统计指标,或在不同时间上的不同数值,按时间先后顺序排列在不同时间上的不同数值,按时间先后顺序排列起来,以便于研究其发展变化的水平和速度,并起来,以便于研究其发展变化的水平和速度,并以此来预测未来的一种统计方法。以此来预测未来的一种统计方法。全国邮电业务总量年份19491957196519781985199819992000亿元1.354.098.7534.0962.212431.21 3330.8

2、2 4792.70例例动动态数列由两个基本要素构成:态数列由两个基本要素构成:时时间,即现象所属的时间;间,即现象所属的时间;不不同时间上的统计指标数值,即不同时间同时间上的统计指标数值,即不同时间上该现象的发展水平。上该现象的发展水平。二、动态数列的种类二、动态数列的种类 动态数列按照所列入指标数值的不同可分为:动态数列按照所列入指标数值的不同可分为:绝对数动态数列绝对数动态数列相对数动态数列相对数动态数列平均数动态数列平均数动态数列时期数列时期数列时点数列时点数列时期数列特点:时期数列特点:数数列中各个指标值是可加的;列中各个指标值是可加的;数数列中每个指标值的大小随着时期的长列中每个指标

3、值的大小随着时期的长短而变动;短而变动;数数列中每个指标值通常是通过连续不断列中每个指标值通常是通过连续不断的登记而取得。的登记而取得。时点数列特点:时点数列特点:数数列中各个指标值是不能相加的;列中各个指标值是不能相加的;数数列中每个指标值的大小与时间间隔列中每个指标值的大小与时间间隔的长短没有直接关系;的长短没有直接关系;数数列中每个指标值通常是按期登记一列中每个指标值通常是按期登记一次取得的。次取得的。三、动态数列的编制原则三、动态数列的编制原则 基本原则是遵守其可比性。基本原则是遵守其可比性。具体说有以下几点:具体说有以下几点:注注意时间的长短应统一;意时间的长短应统一;总总体范围应该

4、一致;体范围应该一致;指指标的经济内容应该相同;标的经济内容应该相同;指指标的计算方法和计量单位应该一致。标的计算方法和计量单位应该一致。第二节第二节 动态数列的水平分析指标动态数列的水平分析指标 属属于现象发展的水平分析指标有:于现象发展的水平分析指标有:发展水平发展水平平均发展水平平均发展水平增长量增长量平均增长量。平均增长量。一、发展水平一、发展水平 在在动态数列中,每个绝对数指标数值叫做发动态数列中,每个绝对数指标数值叫做发展水平或动态数列水平。展水平或动态数列水平。如如果用果用a a0 0,a a1 1,a a2 2,a a3 3,aan n,代表数列中代表数列中各个发展水平,则其中

5、各个发展水平,则其中a a0 0即最初水平,即最初水平,a an n即即最末水平。最末水平。二、平均发展水平二、平均发展水平 平平均发展水平是对不同时期的发展水平求平均发展水平是对不同时期的发展水平求平均数,统计上又叫序时平均数。均数,统计上又叫序时平均数。某车间各月工业增加值月份123456789101112增加值(万元)304038444852546066767082从表从表看出数列反映的增加值参差不齐,变化趋势不明显,看出数列反映的增加值参差不齐,变化趋势不明显,如果计算出各季每月的平均增加值如果计算出各季每月的平均增加值(序时平均数序时平均数),就可,就可以看出它的发展趋势是不断增长的

6、,见下表:以看出它的发展趋势是不断增长的,见下表:季度一二三四各季每月平均增加值(万元)36486076例例序时平均数与一般平均数的异同点:序时平均数与一般平均数的异同点:二者都是将现象的个别数量差异抽象化,概二者都是将现象的个别数量差异抽象化,概括地反映现象的一般水平。括地反映现象的一般水平。不不同点同点 -计算方法不同;计算方法不同;-差异抽象化不同;差异抽象化不同;-序时平均数还可解决某些可比性问题。序时平均数还可解决某些可比性问题。相相同点同点 序时平均数的计算方法:序时平均数的计算方法:1.1.时时期数列的序时平均数期数列的序时平均数 绝绝对数动态数列的序时平均数对数动态数列的序时平

7、均数 123123n ,nnaaaaaannaa a aa LL式式中中:序序时时平平均均数数各各时时期期发发展展水水平平时时期期项项数数2.2.时时点数列的序时平均数点数列的序时平均数1).1).对对连续变动的连续时点数列连续变动的连续时点数列(即未分组资料即未分组资料)(1)(1)如果资料是连续时点资料,可分为二种情况:如果资料是连续时点资料,可分为二种情况:aan 2).2).对对非连续变动的连续时点数列非连续变动的连续时点数列(即分组资料即分组资料)afaf 如果资料是间断时点资料,也可分为二种情况:如果资料是间断时点资料,也可分为二种情况:1)1)对对间隔相等的间断时点资料间隔相等的

8、间断时点资料某成品库存量如下:现假定:每天变化是均匀的;本月初与上月末的库存量相等。则各月平均库存量为:)(2960)274029903150(31)(27402280026806)(29902268033005)(31502330030004件第二季度平均库存量件月份件月份件月份aaa3月31日4月30日5月31日6月30日库存量(件)3000330026802800例例)(29603274029903150 3228002680226803300233003000件第二季度平均库存量:上面计算可合并简化为 122 1222132132211首末折半法这种计算方法称为般公式:上面计算过程概括

9、为一naaaaanaaaaaaannnn2)2)对对间隔不等的间断时点资料间隔不等的间断时点资料2311212111222nnnniiaaaaaafffaf L某城市2003年各时点的人口数日期1月1日5月1日8月1日12月31日人口数(万人)256.2257.1258.3259.4)(83.257123094534524.2593.258323.2581.257421.2572.256万人年平均人口数为:该市则,2003 例例 相相对数动态数列的序时平均数对数动态数列的序时平均数1.1.由由两个时期数列对比组成的相对数动态两个时期数列对比组成的相对数动态数列的序时平均数数列的序时平均数某厂7

10、-9月份生产计划完成情况7月份8月份9月份a 实际产量(件)125613671978b 计划产量(件)115012801760c 产量计划完成%109.2 106.8 112.4banbnabac%8.10941904601 3/)176012801150(3/)197813671256(化为一般公式为:程度第三季度平均计划完成例例2.2.由由两个时点数列对比组成的相对数动态数两个时点数列对比组成的相对数动态数 列的序时平均数列的序时平均数某厂第三季度生产工人与职工人数资料日 期6月30日7月31日 8月31日9月30日 a 生产工人数(人)645670695710 b 全体职工数(人)805

11、826830845 c 生产工人占全体职工的%80.1 81.1 83.7 83.12222)1/()22()1/()22(%18.825.24855.20422845830826280527106956702645321321321321nnnnbbbbaaaanbbbbnaaaabac 化为一般公式为:全体职工的平均比重第三季度生产工人数占例例若若为间隔不等的二个间断时点数列对比组成为间隔不等的二个间断时点数列对比组成的相对数动态数列的序时平均数为:的相对数动态数列的序时平均数为:2311212123112121222222nnnnnnaaaaaafffacbbbbbbbfff LL若若由

12、二个连续时点数列对比组成的相对数动由二个连续时点数列对比组成的相对数动态数列的序时平均数:态数列的序时平均数:aa cbb 连连续续变变动动时时点点:用用简简单单平平均均,即即afa cbfb 非非连连续续变变动动时时点点:用用加加权权平平均均,即即3.3.由由一个时期数列和一个时点数列对比组成一个时期数列和一个时点数列对比组成的相对数动态数列的序时平均数。的相对数动态数列的序时平均数。某商业企业商品销售额与库存额情况1月2月3月a 商品销售额(万元)80150240122bac )(39.9313.3 )(13.3507.156)14/()2655545235(3/)24015080(321

13、nbbbbnan此题化为一般公式为:次月数月平均商品流转次数季度的商品流转次数次商品流转次数第一季度月平均1月1日2月1日3月1日4月1日b 商品库存额(万元)35455565例例 平平均数动态数列的序时平均数均数动态数列的序时平均数1.1.由由一般平均数组成的平均数动态数列的序一般平均数组成的平均数动态数列的序时平均数。时平均数。某厂某年1-6月每一工人平均产值)(62.040529.251 7072706865603.488.461.4444.3965.3933 bac 万元人平均月产值上半年每一工月份123456a 工业增加值(万元)33 39.6539.4444.1 46.848.3b

14、 平均工人数(人)60 656870 7270c 每一工人平均产值(万元)0.55 0.61 0.58 0.63 0.65 0.69例例2.2.由由序时平均数组成的平均数动态数列的序时序时平均数组成的平均数动态数列的序时平均数。平均数。某企业某年各季平均月产值情况)(25.2012243 3333392312317314 万元全年平均每月产值以时间为权数:季 度一二三四平均每月产值(万元)14172129可见,当时期相等时,可直接采用简单算术平均法计算。可见,当时期相等时,可直接采用简单算术平均法计算。若时期或间隔不等时,则要采用加权算术平均法计算。若时期或间隔不等时,则要采用加权算术平均法计

15、算。例例三、增长量三、增长量 说明某种现象在一定时期内所增长的绝对数量。说明某种现象在一定时期内所增长的绝对数量。01011nii-1102132i 1-()(a-a)(a-a)(a-a)(a-a)niiiniiiaaaaaaaa Q增增长长量量报报告告期期水水平平 基基期期水水平平前前一一时时期期因因为为基基期期有有两两种种某某一一固固定定时时期期累累计计增增长长量量:增增长长量量逐逐期期增增长长量量:证证明明:nn-1n0 (a-a)a-a L四、平均增长量四、平均增长量 说明社会现象在一段时期内平均每期增加的说明社会现象在一段时期内平均每期增加的绝对数量。绝对数量。1 逐逐期期增增长长量

16、量之之和和累累计计增增长长量量平平均均增增长长量量逐逐期期增增长长量量个个数数动动态态数数列列项项数数某省1995-2000年某工业产品产量 单位:万台年份199519961997199819992000发展水平:产量1104.31351.1 1707.02215.52872.4 3301.0增长量累计 -246.8 602.7 1111.2 1768.1 2196.7逐期 -246.8 355.9 508.5 656.9 428.6发展速度(%)定基 100 122.3 154.6 200.6 260.1 298.9环比 -122.3 126.3 129.8 129.7 114.9增长速度(

17、%)定基 -22.3 54.6 100.6 160.1 198.9环比 -22.3 26.3 29.8 29.7 14.9增长1%绝对值 -11.0 13.5 17.1 22.2 28.7)(34.43957.2196163.11040.3301 )(34.4395428.6656.9508.5355.9246.8 20001995万台或万台年平均年增长量例例第三节第三节 动态数列的速度分析指标动态数列的速度分析指标 动动态数列的速度指标有:态数列的速度指标有:发展速度发展速度增长速度增长速度平均发展速度平均发展速度平均增长速度平均增长速度 一、发展速度一、发展速度 反映社会经济现象发展程度的

18、动态相对指标。反映社会经济现象发展程度的动态相对指标。报报 告告 期期 水水 平平发发 展展 速速 度度基基 期期 水水 平平定定 基基 发发 展展 速速 度度:可可 分分 为为:环环 比比 发发 展展 速速 度度:01100%iiiaaaa 110iininaaaa 推推 理理:1i001 iiiaaaaaa 二、增长速度二、增长速度 反映社会经济现象增长程度的动态相对指标。反映社会经济现象增长程度的动态相对指标。增增长长速速度度发发展展速速度度 -定定基基增增长长速速度度无无关关系系环环比比增增长长速速度度增增长长量量前前一一时时期期水水平平增增长长的的绝绝对对值值增增长长百百分分比比基基

19、期期水水平平或或 1 (100%)1%100 100 某省1995-2000年某工业产品产量 单位:万台年份199519961997199819992000发展水平:产量1104.31351.11707.02215.52872.43301.0增长量累计 -246.8 602.71111.21768.12196.7逐期 -246.8 355.9 508.5 656.9 428.6发展速度(%)定基 100 122.3 154.6 200.6 260.1 298.9环比 -122.3 126.3 129.8 129.7 114.9增长速度(%)定基 -22.3 54.6 100.6 160.1 1

20、98.9环比 -22.3 26.3 29.8 29.7 14.9增长1%绝对值 -11.0 13.5 17.1 22.2 28.7)(34.43957.2196163.11040.3301 )(34.4395428.6656.9508.5355.9246.8 20001995万台或万台年平均年增长量例例三、平均发展速度和平均增长速度三、平均发展速度和平均增长速度 平平均发展速度是各个环比发展速度的动态平均均发展速度是各个环比发展速度的动态平均数数(序时平均数序时平均数),说明某种现象在一个较长时,说明某种现象在一个较长时期中逐年平均发展变化的程度;期中逐年平均发展变化的程度;平平均增长速度是各

21、个环比增长速度的动态平均均增长速度是各个环比增长速度的动态平均数,说明某种现象在一个较长时期中逐年平均数,说明某种现象在一个较长时期中逐年平均增长变化的程度。增长变化的程度。平均发展速度平均发展速度1.1.几几何平均法,又称水平法。何平均法,又称水平法。各各个个环环比比发发展展速速度度环环比比发发展展速速度度的的个个数数连连乘乘符符号号n12331201210 XX(1)(2)(3)LLnnnnnnnnXnXXXXaaaaaaaaaaR 总总速速度度 定定基基发发展展速速度度()R2.2.方方程法,又称累计法。程法,又称累计法。在实践中,如果长期计划按累计法制定,则要求用方程法在实践中,如果长

22、期计划按累计法制定,则要求用方程法计算平均发展速度。计算平均发展速度。102210312330 0230000120 1 11ninnniinnaa Xaa Xa Xnaaaaaaa Xiaa Xna Xa Xa Xa XainaiXXXXa QLQMLL解解这这样样的的高高次次方方程程,用用查查表表法法。平均增长速度平均增长速度平均增长速度平均增长速度=平均发展速度平均发展速度-1 (100%)-1 (100%)平平均发展速度大于均发展速度大于“1”1”,平均增长速度就为正值。,平均增长速度就为正值。则称则称“平均递增速度平均递增速度”或或“平均递增率平均递增率”。平平均发展速度小于均发展速

23、度小于“1”1”,平均增长速度就为负值。,平均增长速度就为负值。则称则称“平均递减速度平均递减速度”或或“平均递减率平均递减率”。第四节第四节 长期趋势的测定与预测长期趋势的测定与预测 长长期趋势就是指某一现象在一个相当长的时期期趋势就是指某一现象在一个相当长的时期内持续发展变化的趋势。内持续发展变化的趋势。(向上或向下变化向上或向下变化)测定长期趋势的目的主要有三个:测定长期趋势的目的主要有三个:把把握现象的趋势变化;握现象的趋势变化;从从数量方面研究现象发展的规律性,探数量方面研究现象发展的规律性,探求合适趋势线;求合适趋势线;为为测定季节变动的需要。测定季节变动的需要。长期趋势的类型基本

24、有二种:长期趋势的类型基本有二种:直直线趋势;线趋势;非非直线趋势,即趋势曲线。直线趋势,即趋势曲线。测定长期趋势常用的主要方法有:测定长期趋势常用的主要方法有:间间隔扩大法;隔扩大法;移移动平均法;动平均法;最最小平方法。小平方法。一、间隔扩大法一、间隔扩大法 某工厂某年各月增加值完成情况 单位:万元月份123456789101112增加值50.5455251.550.455.55358.45759.25860.5 通过扩大时间间隔,编制成如下新的动态数列:第一季度第二季度第三季度第四季度增加值(万元)147.5157.4168.4177.7由月资料整理的季度资料,趋势明显是不断增长的,原来

25、的月资料则表现出波动。将季度资料也可改用间隔扩大平均数编制成如下数列:第一季度第二季度第三季度第四季度平均增加值(万元)49.252.556.159.2上表也可看出其逐期增长的趋势。例例二、移动平均法二、移动平均法 仍用上例资料:月份123456789101112增加值y(万元)50.5455251.550.455.55358.45759.25860.5三项移动平均yc-49.249.551.352.55355.656.158.258.159.2-趋势值项数=原数列项数-移动平均项数+1 =12-3+1=10注注1 1:若采用奇数项移动平均若采用奇数项移动平均(如上例如上例“三项三项”),则平

26、均值是对准在奇项的居中时间处。一次可则平均值是对准在奇项的居中时间处。一次可得趋势值;得趋势值;若采用偶数项移动平均,则平均值也居中,若采用偶数项移动平均,则平均值也居中,因未对准原来的时间,还要再计算一次平均数,因未对准原来的时间,还要再计算一次平均数,故一般都用奇数项移动平均。故一般都用奇数项移动平均。注注2 2:修匀后的数列,较原数列项数少。修匀后的数列,较原数列项数少。(在进在进行统计分析时,若需要两端数据,则此法不宜行统计分析时,若需要两端数据,则此法不宜使用使用)注注3 3:取几项进行移动平均为好,一般若现象有取几项进行移动平均为好,一般若现象有周期变动,则以周期为长度。例,季度资

27、料周期变动,则以周期为长度。例,季度资料可四项移动平均;各年月资料,可十二项移可四项移动平均;各年月资料,可十二项移动平均;五年一周期,可五项移动平均。移动平均;五年一周期,可五项移动平均。移动平均法可消除周期变动。动平均法可消除周期变动。月份123456789101112y50.5455251.550.455.55358.45759.25860.5四项移动平均 49.8 49.7 52.4 52.6 54.3 56.0 56.9 58.2 58.7二项移正yc49.851.152.553.555.256.557.658.5用四项移动平均后的资料作图,趋势更明显,上升得更均匀,可见修匀的项数越

28、多,效果越好。(但丢掉的数据多一些)仍用上例资料:404550556065123456789101112原始资料三项移动后的趋势四项移动后的趋势由此可见,该厂的增加值趋势是上升的。图示图示三、最小平方法三、最小平方法 2c()min y ycyy 实实际际值值,即即原原数数列列值值趋趋势势值值或或理理论论值值即对即对原有动态数列配合一条适当的趋势线来进行修匀。原有动态数列配合一条适当的趋势线来进行修匀。这条趋势线可以是直线,也可以是曲线;这条趋势线这条趋势线可以是直线,也可以是曲线;这条趋势线必须满足最基本的要求。即:必须满足最基本的要求。即:现主要介绍配合直线方程,抛物线方程及指数曲线方程。

29、现主要介绍配合直线方程,抛物线方程及指数曲线方程。直线方程直线方程当当现象的发展,其逐期增长量大体上相等时。现象的发展,其逐期增长量大体上相等时。该方程的一般形式为:该方程的一般形式为:cyabt a截截距距;b直直线线的的斜斜率率 22 ()min V 2()0a V 2()0b()0 ()0 321 0 1 2 3 531 VyabtyabtyabttyNabtyabtyabt ttyatbtt LLL设设联联立立方方程程组组为为:为为使使计计算算方方便便,可可设设:奇奇数数项项:,偶偶数数项项:,21 3 5 0tyNatybt L,这这样样使使,即即上上述述方方程程组组可可简简化化为为

30、:tytyt2yc逐期增长量 -11 50.5 -555.512147.98-9 45 -405 8149.12-5.5 -7 52 -364 4950.267 -5 51.5 -257.5 2551.40-0.5 -3 50.4 -151.2 952.54-0.9 -1 55.5 -55.5 153.68 5.1 1 53 53 154.82-2.5 3 58.4 175.2 955.96 5.4 5 57 285 2557.10 -1.4 7 59.2 414.4 4958.24 2.2 9 58 522 8159.38-1.2 11 60.5 665.512160.52 2.5合计 65

31、1.0 326.4572 651.00-仍用上例资料:)(8.621557.025.54y 25.541265157.0572124.326120)()(c222万元值,则若预测明年二月份增加公式得:、上例资料代入导出:由联立方程也可直接推 ababtnyntbnyt byattyttnyttynb该方程配合得较好 57.025.5457.025.54 5724.32612651 2ccyytybabatbtyNay 抛物线方程抛物线方程当当现象的发展,其二级增长量大体上相等时。现象的发展,其二级增长量大体上相等时。50 69 90 110 19 21 20 逐逐期期增增长长量量:二二级级增增

32、长长量量:则则给给该该资资料料配配合合抛抛物物线线方方程程2c2233224yabtct (abc)yNabtcttyatbtctt yatbtct 该该方方程程的的一一般般形形式式为为:、均均为为未未定定参参数数同同样样用用求求偏偏导导数数的的方方法法,导导出出以以下下联联立立方方程程组组:例例 指数曲线方程指数曲线方程当当现象的发展,环比增长速度大体上相等时。现象的发展,环比增长速度大体上相等时。tcyab 该该方方程程的的一一般般形形式式为为:2lglglglg,lg ,lg (,0)ccyatbYyAaBbYABtYNABttYAtBttt 先先对对上上述述方方程程两两边边各各取取对对

33、数数:设设则则:应应用用最最小小平平方方法法求求得得的的联联立立方方程程组组为为:同同样样设设 使使例题见教材P164-166 第五节第五节 季度变动的测定与预测季度变动的测定与预测 一、季节变动分析的意义一、季节变动分析的意义测测定季节变动的资料时间至少要有三个周期以上,定季节变动的资料时间至少要有三个周期以上,如季节资料,至少要有如季节资料,至少要有1212季,月度资料至季,月度资料至少要有少要有3636个月等,以避免资料太少而产生偶然个月等,以避免资料太少而产生偶然性。性。测定季节变动的方法有二种:测定季节变动的方法有二种:按按月平均法,不考虑长期趋势的影响月平均法,不考虑长期趋势的影响

34、(假定不存假定不存在长期趋势在长期趋势),直接利用原始动态数列来计算;,直接利用原始动态数列来计算;移移动平均趋势剔除法,即考虑长期趋势的存在,动平均趋势剔除法,即考虑长期趋势的存在,剔除其影响后再进行计算,故常用此法。剔除其影响后再进行计算,故常用此法。二、按月平均法测定季节变动二、按月平均法测定季节变动 也称按季平均法。若为月度资料就按月平均;若为也称按季平均法。若为月度资料就按月平均;若为季度资料则按季平均。季度资料则按季平均。其其步骤如下:步骤如下:列表,将各年同月列表,将各年同月(季季)的数值列在同一栏内;的数值列在同一栏内;将各年同月将各年同月(季季)数值加总,并求出月数值加总,并

35、求出月(季季)平均平均 数;数;将所有同月将所有同月(季季)数值加总,求出总的月数值加总,求出总的月(季季)平均平均数;数;求季节比率求季节比率(或季节指数或季节指数)。某地区各月毛线销售量季节变动计算表 单位:百千克 月份 年份123456789101112合计第一年150 90 402610 812 20 35 85 340 360 1176第二年230150 6040201032 40 70150 420 480 1702第三年280120 803012 937 48 84140 470 500 1820合计6603601809642278110818937512301350 4698月

36、平均数220120 603214 927 36 63125 410 450 130.5季节比率(%)168.58 91.95 45.9824.5210.73 6.9020.69 27.59 48.28 95.79 314.18 344.83 1200例例)(66.64018.31452.245011)(33.19579.9552.2450101110504:%58.168%1005.130220.1S.I.1200 5.130 :364698%100.)(百千克月份销售量百千克月份销售量月份销售量:、百千克,预测今年月份销售量为若知,今年预测方法月份例:实际计算出调整系数若需调整,则算全期各月

37、平均数全期各月平均数各月平均数:或季节指数季节比率ISIS三、移动平均趋势剔除法测定季节变动三、移动平均趋势剔除法测定季节变动 为方便计算,把上例月资料改为季资料:为方便计算,把上例月资料改为季资料:单位:百千克 季度 年份一二三四第一年28044 67 785第二年440701421050第三年480511691120季度销售量y(百千克)四项移动平均二项移正yc趋势值剔除减法y-yc除法y/yc100%第一年 280 -44-67314-247 21.34 785337.25 447.75232.77第二年 440349.875 90.125125.76 70392.375-322.375

38、 17.84 142430.5-288.5 32.98 1050433.125 616.875242.42第三年 480434.125 45.875110.57 51446.25-395.25 11.43 169-1120-294334340.5359.25425.5435.5430.75437.5455对减法分析如下:第一季第二季第三季第四季合计第一年-247 447.75第二年 90.125 -322.375 -288.5 616.875第三年 45.875 -395.25-合 计 136 -717.625 -535.51064.625平 均 68 -358.8125 -267.75 53

39、2.3125 -26.25校正数 +6.56 +6.56 +6.56 +6.56季节变差S.V.74.56 -352.25 -261.19 538.870对除法分析如下:第一季第二季第三季第四季合计第一年-21.34 232.77第二年 125.76 17.84 32.98 242.42第三年 110.57 11.43-合 计 236.33 29.27 54.32 475.19平 均 118.165 14.635 27.16 237.60 397.56校正比例 1.0061 1.0061 1.0061 1.0061季节比率S.I.118.89 14.72 27.33 239.05 400End of Chapter 4

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|