ImageVerifierCode 换一换
格式:PPT , 页数:23 ,大小:634KB ,
文档编号:431066      下载积分:8 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-431066.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(金钥匙文档)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(大学精品课件:高等数学第八章偏导数.ppt)为本站会员(金钥匙文档)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

大学精品课件:高等数学第八章偏导数.ppt

1、,第二节,机动 目录 上页 下页 返回 结束,一、 偏导数概念及其计算,二 、高阶偏导数,偏 导 数,第八章,一、 偏导数定义及其计算法,引例:,研究弦在点 x0 处的振动速度与加速度 ,就是,中的 x 固定于,求,一阶导数与二阶导数.,x0 处,关于 t 的,机动 目录 上页 下页 返回 结束,将振幅,定义1.,在点,存在,的偏导数,记为,的某邻域内,则称此极限为函数,极限,设函数,机动 目录 上页 下页 返回 结束,注意:,同样可定义对 y 的偏导数,若函数 z = f ( x , y ) 在域 D 内每一点 ( x , y ) 处对 x,则该偏导数称为偏导函数,也简称为,偏导数 ,记为,

2、机动 目录 上页 下页 返回 结束,或 y 偏导数存在 ,例如, 三元函数 u = f (x , y , z) 在点 (x , y , z) 处对 x 的,偏导数的概念可以推广到二元以上的函数 .,机动 目录 上页 下页 返回 结束,偏导数定义为,(请自己写出),二元函数偏导数的几何意义:,是曲线,在点 M0 处的切线,对 x 轴的斜率.,在点M0 处的切线,斜率.,是曲线,机动 目录 上页 下页 返回 结束,对 y 轴的,函数在某点各偏导数都存在,显然,例如,注意:,但在该点不一定连续.,上节例 目录 上页 下页 返回 结束,在上节已证 f (x , y) 在点(0 , 0)并不连续!,例1

3、 . 求,解法1:,解法2:,在点(1 , 2) 处的偏导数.,机动 目录 上页 下页 返回 结束,例2. 设,证:,例3. 求,的偏导数 . (P14 例4),解:,求证,机动 目录 上页 下页 返回 结束,偏导数记号是一个,例4. 已知理想气体的状态方程,求证:,证:,说明:,(R 为常数) ,不能看作,分子与分母的商 !,此例表明,机动 目录 上页 下页 返回 结束,整体记号,二、高阶偏导数,设 z = f (x , y)在域 D 内存在连续的偏导数,若这两个偏导数仍存在偏导数,,则称它们是z = f ( x , y ),的二阶偏导数 .,按求导顺序不同, 有下列四个二阶偏导,机动 目录

4、 上页 下页 返回 结束,数:,类似可以定义更高阶的偏导数.,例如,z = f (x , y) 关于 x 的三阶偏导数为,z = f (x , y) 关于 x 的 n 1 阶偏导数 , 再关于 y 的一阶,机动 目录 上页 下页 返回 结束,偏导数为,例5. 求函数,解 :,注意:此处,但这一结论并不总成立.,机动 目录 上页 下页 返回 结束,的二阶偏导数及,例如,二者不等,机动 目录 上页 下页 返回 结束,例6. 证明函数,满足拉普拉斯,证:,利用对称性 , 有,方程,机动 目录 上页 下页 返回 结束,则,证明 目录 上页 下页 返回 结束,定理.,例如, 对三元函数 u = f (x

5、 , y , z) ,说明:,本定理对 n 元函数的高阶混合导数也成立.,函数在其定义区域内是连续的 ,故求初等函数的高阶导,数可以选择方便的求导顺序.,因为初等函数的偏导数仍为初等函数 ,当三阶混合偏导数,在点 (x , y , z) 连续时, 有,而初等,(证明略),证:令,则,则,机动 目录 上页 下页 返回 结束,定理.,令,同样,在点,连续,得,机动 目录 上页 下页 返回 结束,内容小结,1. 偏导数的概念及有关结论,定义; 记号; 几何意义,函数在一点偏导数存在,函数在此点连续,混合偏导数连续,与求导顺序无关,2. 偏导数的计算方法,求一点处偏导数的方法,先代后求,先求后代,利用定义,求高阶偏导数的方法,逐次求导法,(与求导顺序无关时, 应选择方便的求导顺序),机动 目录 上页 下页 返回 结束,思考与练习,解答提示:,P73 题 5,P73 题 5 , 6,即 xy0 时,机动 目录 上页 下页 返回 结束,P73 题6,(1),(2),机动 目录 上页 下页 返回 结束,作业,P18 1(4),(6),(8); 3; 5; 6(3); 7; 8; 9(2),第三节 目录 上页 下页 返回 结束,备用题,设,方程,确定 u 是 x , y 的函数 ,连续, 且,求,解:,机动 目录 上页 下页 返回 结束,

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|