ImageVerifierCode 换一换
格式:PPT , 页数:25 ,大小:693KB ,
文档编号:431074      下载积分:8 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-431074.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(金钥匙文档)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(大学精品课件:高等数学第二章隐函数.ppt)为本站会员(金钥匙文档)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

大学精品课件:高等数学第二章隐函数.ppt

1、,第四节,一、隐函数的导数,二、由参数方程确定的函数的导数,三、相关变化率,机动 目录 上页 下页 返回 结束,隐函数和参数方程求导,相关变化率,第二章,一、隐函数的导数,若由方程,可确定 y 是 x 的函数 ,由,表示的函数 , 称为显函数 .,例如,可确定显函数,可确定 y 是 x 的函数 ,但此隐函数不能显化 .,函数为隐函数 .,则称此,隐函数求导方法:,两边对 x 求导,(含导数 的方程),机动 目录 上页 下页 返回 结束,例1. 求由方程,在 x = 0 处的导数,解: 方程两边对 x 求导,得,因 x = 0 时 y = 0 , 故,确定的隐函数,机动 目录 上页 下页 返回

2、结束,例2. 求椭圆,在点,处的切线方程.,解: 椭圆方程两边对 x 求导,故切线方程为,即,机动 目录 上页 下页 返回 结束,例3. 求,的导数 .,解: 两边取对数 , 化为隐式,两边对 x 求导,机动 目录 上页 下页 返回 结束,1) 对幂指函数,可用对数求导法求导 :,说明:,注意:,机动 目录 上页 下页 返回 结束,2) 有些显函数用对数求导法求导很方便 .,例如,两边取对数,两边对 x 求导,机动 目录 上页 下页 返回 结束,又如,对 x 求导,两边取对数,机动 目录 上页 下页 返回 结束,二、由参数方程确定的函数的导数,若参数方程,可确定一个 y 与 x 之间的函数,可

3、导, 且,则,时, 有,时, 有,(此时看成 x 是 y 的函数 ),关系,机动 目录 上页 下页 返回 结束,若上述参数方程中,二阶可导,且,则由它确定的函数,可求二阶导数 .,利用新的参数方程,可得,机动 目录 上页 下页 返回 结束,?,例4. 设, 且,求,已知,解:,练习: P111 题8(1),解:,注意 :,机动 目录 上页 下页 返回 结束,例5. 抛射体运动轨迹的参数方程为,求抛射体在时刻 t 的运动速度的大小和方向.,解: 先求速度大小:,速度的水平分量为,垂直分量为,故抛射体速度大小,再求速度方向,(即轨迹的切线方向):,设 为切线倾角,则,机动 目录 上页 下页 返回

4、结束,抛射体轨迹的参数方程,速度的水平分量,垂直分量,在刚射出 (即 t = 0 )时, 倾角为,达到最高点的时刻,高度,落地时刻,抛射最远距离,速度的方向,机动 目录 上页 下页 返回 结束,例6. 设由方程,确定函数,求,解: 方程组两边对 t 求导 , 得,故,机动 目录 上页 下页 返回 结束,三、相关变化率,为两可导函数,之间有联系,之间也有联系,称为相关变化率,相关变化率问题解法:,找出相关变量的关系式,对 t 求导,得相关变化率之间的关系式,求出未知的相关变化率,机动 目录 上页 下页 返回 结束,例7. 一气球从离开观察员500 m 处离地面铅直上升,其速率为,当气球高度为 5

5、00 m 时, 观察员,视线的仰角增加率是多少?,解: 设气球上升 t 分后其高度为h , 仰角为 ,则,两边对 t 求导,已知,h = 500m 时,机动 目录 上页 下页 返回 结束,思考题: 当气球升至500 m 时停住 , 有一观测者以,100 mmin 的速率向气球出发点走来,当距离为500 m,时, 仰角的增加率是多少 ?,提示:,对 t 求导,已知,求,机动 目录 上页 下页 返回 结束,试求当容器内水,例8. 有一底半径为 R cm , 高为 h cm 的圆锥容器 ,今以 自顶部向容器内注水 ,位等于锥高的一半时水面上升的速度.,解: 设时刻 t 容器内水面高度为 x ,水的,

6、两边对 t 求导,而,故,体积为 V , 则,机动 目录 上页 下页 返回 结束,内容小结,1. 隐函数求导法则,直接对方程两边求导,2. 对数求导法 :,适用于幂指函数及某些用连乘, 连除表示的函数,3. 参数方程求导法,极坐标方程求导,4. 相关变化率问题,列出依赖于 t 的相关变量关系式,对 t 求导,相关变化率之间的关系式,转化,求高阶导数时,从低到高每次都用参数方程求导公式,机动 目录 上页 下页 返回 结束,思考与练习,1. 求螺线,在对应于,的点处的切线方程.,解: 化为参数方程,当,时对应点,斜率, 切线方程为,机动 目录 上页 下页 返回 结束,2. 设,求,提示: 分别用对

7、数微分法求,答案:,机动 目录 上页 下页 返回 结束,3. 设,由方程,确定 ,解:,方程两边对 x 求导,得,再求导, 得,当,时,故由 得,再代入 得,求,机动 目录 上页 下页 返回 结束,作业,P110 1(1) , (4) ; 2 ; 3 (3) , (4) ; 4 (2) , (4); 5 (2) ; 6 ; 7 (2) ; 8 (2) ,(4) ; 9 (2) ; 10 ; 12,第五节 目录 上页 下页 返回 结束,求其反函数的导数 .,解:,方法1,方法2,等式两边同时对 求导,备用题,1. 设,机动 目录 上页 下页 返回 结束, 求,解:,2. 设,方程组两边同时对 t 求导, 得,机动 目录 上页 下页 返回 结束,

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|