ImageVerifierCode 换一换
格式:PPT , 页数:29 ,大小:795.50KB ,
文档编号:431118      下载积分:8 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-431118.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(金钥匙文档)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(大学精品课件:高等数学第十一章幂级数.ppt)为本站会员(金钥匙文档)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

大学精品课件:高等数学第十一章幂级数.ppt

1、,第三节,一、函数项级数的概念,二、幂级数及其收敛性,三、幂级数的运算,幂级数,机动 目录 上页 下页 返回 结束,第十一章,一、 函数项级数的概念,设,为定义在区间 I 上的函数项级数 .,对,若常数项级数,敛点,所有收敛点的全体称为其收敛域 ;,若常数项级数,为定义在区间 I 上的函数, 称,收敛,发散 ,所有,为其收,为其发散点,发散点的全体称为其发散域 .,机动 目录 上页 下页 返回 结束,为级数的和函数 , 并写成,若用,令余项,则在收敛域上有,表示函数项级数前 n 项的和, 即,在收敛域上, 函数项级数的和是 x 的函数,称它,机动 目录 上页 下页 返回 结束,例如, 等比级数

2、,它的收敛域是,它的发散域是,或写作,又如, 级数,级数发散 ;,所以级数的收敛域仅为,有和函数,机动 目录 上页 下页 返回 结束,二、幂级数及其收敛性,形如,的函数项级数称为幂级数,其中数列,下面着重讨论,例如, 幂级数,为幂级数的系数 .,即是此种情形.,的情形, 即,称,机动 目录 上页 下页 返回 结束,收敛,发散,定理 1. ( Abel定理 ),若幂级数,则对满足不等式,的一切 x 幂级数都绝对收敛.,反之, 若当,的一切 x , 该幂级数也发散 .,时该幂级数发散 ,则对满足不等式,证: 设,收敛,则必有,于是存在,常数 M 0, 使,阿贝尔 目录 上页 下页 返回 结束,当

3、时,收敛,故原幂级数绝对收敛 .,也收敛,反之, 若当,时该幂级数发散 ,下面用反证法证之.,假设有一点,满足不等式,所以若当,满足,且使级数收敛 ,面的证明可知,级数在点,故假设不真.,的 x , 原幂级数也发散 .,时幂级数发散 ,则对一切,则由前,也应收敛,与所设矛盾,证毕,机动 目录 上页 下页 返回 结束,幂级数在 (, +) 收敛 ;,由Abel 定理可以看出,中心的区间.,用R 表示幂级数收敛与发散的分界点,的收敛域是以原点为,则,R = 0 时,幂级数仅在 x = 0 收敛 ;,R = 时,幂级数在 (R , R ) 收敛 ;,(R , R ) 加上收敛的端点称为收敛域.,R

4、称为收敛半径 ,,在R , R ,可能收敛也可能发散 .,外发散;,在,(R , R ) 称为收敛区间.,机动 目录 上页 下页 返回 结束,定理2. 若,的系数满足,证:,1) 若 0,则根据比值审敛法可知:,当,原级数收敛;,当,原级数发散.,即,时,1) 当 0 时,2) 当 0 时,3) 当 时,即,时,则,机动 目录 上页 下页 返回 结束,2) 若,则根据比值审敛法可知,绝对收敛 ,3) 若,则对除 x = 0 以外的一切 x 原级发散 ,对任意 x 原级数,因此,因此,的收敛半径为,说明:据此定理,因此级数的收敛半径,机动 目录 上页 下页 返回 结束,对端点 x =1,的收敛半

5、径及收敛域.,解:,对端点 x = 1, 级数为交错级数,收敛;,级数为,发散 .,故收敛域为,例1.求幂级数,机动 目录 上页 下页 返回 结束,例2. 求下列幂级数的收敛域 :,解: (1),所以收敛域为,(2),所以级数仅在 x = 0 处收敛 .,规定: 0 ! = 1,机动 目录 上页 下页 返回 结束,例3.,的收敛半径 .,解: 级数缺少奇次幂项,不能直接应用定理2,比值审敛法求收敛半径.,时级数收敛,时级数发散,故收敛半径为,故直接由,机动 目录 上页 下页 返回 结束,例4.,的收敛域.,解: 令,级数变为,当 t = 2 时, 级数为,此级数发散;,当 t = 2 时, 级

6、数为,此级数条件收敛;,因此级数的收敛域为,故原级数的收敛域为,即,机动 目录 上页 下页 返回 结束,三、幂级数的运算,定理3. 设幂级数,及,的收敛半径分别为,令,则有 :,其中,以上结论可用部分和的极限证明 .,机动 目录 上页 下页 返回 结束,说明:,两个幂级数相除所得幂级数的收敛半径可能比,原来两个幂级数的收敛半径小得多.,例如, 设,它们的收敛半径均为,但是,其收敛半径只是,机动 目录 上页 下页 返回 结束,定理4 若幂级数,的收敛半径,(证明见第六节),则其和函,在收敛域上连续,且在收敛区间内可逐项求导与,逐项求积分,运算前后收敛半径相同:,注: 逐项积分时, 运算前后端点处

7、的敛散性不变.,机动 目录 上页 下页 返回 结束,解: 由例2可知级数的收敛半径 R+.,例5.,则,故有,故得,的和函数 .,因此得,设,机动 目录 上页 下页 返回 结束,例6.,的和函数,解: 易求出幂级数的收敛半径为 1 ,x1 时级数发,散,机动 目录 上页 下页 返回 结束,例7. 求级数,的和函数,解: 易求出幂级数的收敛半径为 1 ,及,收敛 ,机动 目录 上页 下页 返回 结束,因此由和函数的连续性得:,而,及,机动 目录 上页 下页 返回 结束,例8.,解: 设,则,机动 目录 上页 下页 返回 结束,而,故,机动 目录 上页 下页 返回 结束,内容小结,1. 求幂级数收

8、敛域的方法,1) 对标准型幂级数,先求收敛半径 , 再讨论端点的收敛性 .,2) 对非标准型幂级数(缺项或通项为复合式),求收敛半径时直接用比值法或根值法,2. 幂级数的性质,两个幂级数在公共收敛区间内可进行加、减与,也可通过换元化为标准型再求 .,乘法运算.,机动 目录 上页 下页 返回 结束,2) 在收敛区间内幂级数的和函数连续;,3) 幂级数在收敛区间内可逐项求导和求积分.,思考与练习,1. 已知,处条件收敛 , 问该级数收敛,半径是多少 ?,答:,根据Abel 定理可知, 级数在,收敛 ,时发散 .,故收敛半径为,机动 目录 上页 下页 返回 结束,2. 在幂级数,中,n 为奇数,n

9、为偶数,能否确定它的收敛半径不存在 ?,答: 不能.,因为,当,时级数收敛 ,时级数发散 ,说明: 可以证明,比值判别法成立,根值判别法成立,机动 目录 上页 下页 返回 结束,P215 1 (1), (3), (5), (7), (8) 2 (1), (3) P257 7 (1), (4) 8 (1), (3),作业,第四节 目录 上页 下页 返回 结束,阿贝尔(1802 1829),挪威数学家, 近代数学发展的先驱者.,他在22岁时就解决了用根式解5 次方程,的不可能性问题 ,他还研究了更广的一,并称之为阿贝尔群.,在级数研究中, 他得,到了一些判敛准则及幂级数求和定理.,论的奠基人之一,他的一系列工作为椭圆函数研究开,拓了道路.,数学家们工作150年.,类代数方程,他是椭圆函数,C. 埃尔米特曾说: 阿贝尔留下的思想可供,后人发现这是一类交换群,备用题 求极限,其中,解: 令,作幂级数,设其和为,易知其收敛半径为 1,则,机动 目录 上页 下页 返回 结束,

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|