ImageVerifierCode 换一换
格式:PPT , 页数:28 ,大小:859KB ,
文档编号:431127      下载积分:8 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-431127.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(金钥匙文档)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(大学精品课件:高等数学第十章对坐标曲线积分.ppt)为本站会员(金钥匙文档)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

大学精品课件:高等数学第十章对坐标曲线积分.ppt

1、,第二节,一、对坐标的曲线积分的概念 与性质,二、 对坐标的曲线积分的计算法,三、两类曲线积分之间的联系,机动 目录 上页 下页 返回 结束,对坐标的曲线积分,第十章,一、 对坐标的曲线积分的概念与性质,1. 引例: 变力沿曲线所作的功.,设一质点受如下变力作用,在 xoy 平面内从点 A 沿光滑曲线弧 L 移动到点 B,求移,“大化小”,“常代变”,“近似和”,“取极限”,变力沿直线所作的功,解决办法:,动过程中变力所作的功W.,机动 目录 上页 下页 返回 结束,1) “大化小”.,2) “常代变”,把L分成 n 个小弧段,有向小弧段,近似代替,则有,所做的功为,则,用有向线段,机动 目录

2、 上页 下页 返回 结束,3) “近似和”,4) “取极限”,(其中 为 n 个小弧段的 最大长度),机动 目录 上页 下页 返回 结束,2. 定义.,设 L 为xoy 平面内从 A 到B 的一条有向光滑,弧,若对 L 的任意分割和在局部弧段上任意取点,都存在,在有向曲线弧 L 上,对坐标的曲线积分,则称此极限为函数,或第二类曲线积分.,其中,L 称为积分弧段 或 积分曲线 .,称为被积函数 ,在L 上定义了一个向量函数,极限,机动 目录 上页 下页 返回 结束,若 为空间曲线弧 , 记,称为对 x 的曲线积分;,称为对 y 的曲线积分.,若记, 对坐标的曲线积分也可写作,类似地,机动 目录

3、上页 下页 返回 结束,3. 性质,(1) 若 L 可分成 k 条有向光滑曲线弧,(2) 用L 表示 L 的反向弧 , 则,则,定积分是第二类曲线积分的特例.,说明:,对坐标的曲线积分必须注意积分弧段的方向 !,机动 目录 上页 下页 返回 结束,二、对坐标的曲线积分的计算法,定理:,在有向光滑弧 L 上有定义且,L 的参数方程为,则曲线积分,连续,证明: 下面先证,存在, 且有,机动 目录 上页 下页 返回 结束,对应参数,设分点,根据定义,由于,对应参数,因为L 为光滑弧 ,同理可证,机动 目录 上页 下页 返回 结束,特别是, 如果 L 的方程为,则,对空间光滑曲线弧 :,类似有,定理

4、目录 上页 下页 返回 结束,例1. 计算,其中L 为沿抛物线,解法1 取 x 为参数, 则,解法2 取 y 为参数, 则,从点,的一段.,机动 目录 上页 下页 返回 结束,例2. 计算,其中 L 为,(1) 半径为 a 圆心在原点的,上半圆周, 方向为逆时针方向;,(2) 从点 A ( a , 0 )沿 x 轴到点 B ( a , 0 ).,解: (1) 取L的参数方程为,(2) 取 L 的方程为,则,则,机动 目录 上页 下页 返回 结束,例3. 计算,其中L为,(1) 抛物线,(2) 抛物线,(3) 有向折线,解: (1) 原式,(2) 原式,(3) 原式,机动 目录 上页 下页 返回

5、 结束,例4. 设在力场,作用下, 质点由,沿移动到,解: (1),(2) 的参数方程为,试求力场对质点所作的功.,其中为,机动 目录 上页 下页 返回 结束,例5. 求,其中,从 z 轴正向看为顺时针方向.,解: 取 的参数方程,机动 目录 上页 下页 返回 结束,三、两类曲线积分之间的联系,设有向光滑弧 L 以弧长为参数 的参数方程为,已知L切向量的方向余弦为,则两类曲线积分有如下联系,机动 目录 上页 下页 返回 结束,类似地, 在空间曲线 上的两类曲线积分的联系是,令,机动 目录 上页 下页 返回 结束,二者夹角为 ,例6. 设,曲线段 L 的长度为s, 证明,续,证:,设,说明: 上

6、述证法可推广到三维的第二类曲线积分.,在L上连,机动 目录 上页 下页 返回 结束,例7.,将积分,化为对弧长的积,分,解:,其中L 沿上半圆周,机动 目录 上页 下页 返回 结束,1. 定义,2. 性质,(1) L可分成 k 条有向光滑曲线弧,(2) L 表示 L 的反向弧,对坐标的曲线积分必须注意积分弧段的方向!,内容小结,机动 目录 上页 下页 返回 结束,3. 计算, 对有向光滑弧, 对有向光滑弧,机动 目录 上页 下页 返回 结束,4. 两类曲线积分的联系, 对空间有向光滑弧 :,机动 目录 上页 下页 返回 结束,原点 O 的距离成正比,思考与练习,1. 设一个质点在,处受,恒指向

7、原点,沿椭圆,此质点由点,沿逆时针移动到,提示:,(解见 P139 例5),机动 目录 上页 下页 返回 结束,2. 已知,为折线 ABCOA(如图), 计算,提示:,机动 目录 上页 下页 返回 结束,作业,P141 3 (2), (4), (6), (7) ; 4 ; 5 ; 7 ; 8,第三节 目录 上页 下页 返回 结束,备用题 1.,解:,线移动到,向坐标原点,其大小与作用点到 xoy 面的距离成反比.,沿直,机动 目录 上页 下页 返回 结束,2. 设曲线C为曲面,与曲面,从 ox 轴正向看去为逆时针方向,(1) 写出曲线 C 的参数方程 ;,(2) 计算曲线积分,解: (1),机动 目录 上页 下页 返回 结束,(2) 原式 =,令,利用“偶倍奇零”,机动 目录 上页 下页 返回 结束,

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|