ImageVerifierCode 换一换
格式:PPT , 页数:29 ,大小:749.50KB ,
文档编号:431143      下载积分:8 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-431143.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(金钥匙文档)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(大学精品课件:高等数学第五章习题课.ppt)为本站会员(金钥匙文档)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

大学精品课件:高等数学第五章习题课.ppt

1、,习题课,一、与定积分概念有关的问题的解法,机动 目录 上页 下页 返回 结束,二、有关定积分计算和证明的方法,定积分及其相关问题,第五章,一、与定积分概念有关的问题的解法,1. 用定积分概念与性质求极限,2. 用定积分性质估值,3. 与变限积分有关的问题,机动 目录 上页 下页 返回 结束,例1. 求,解: 因为,时,所以,利用夹逼准则得,因为,依赖于,且,1) 思考例1下列做法对吗 ?,利用积分中值定理,原式,不对 !,机动 目录 上页 下页 返回 结束,说明:,2) 此类问题放大或缩小时一般应保留含参数的项 .,如, P265 题4,解:将数列适当放大和缩小,以简化成积分和:,已知,利用

2、夹逼准则可知,(考研98 ),例2. 求,机动 目录 上页 下页 返回 结束,思考:,提示:由上题,机动 目录 上页 下页 返回 结束,故,练习: 1.,求极限,解:,原式,2. 求极限,提示:,原式,左边,= 右边,机动 目录 上页 下页 返回 结束,例3.,估计下列积分值,解: 因为,即,机动 目录 上页 下页 返回 结束,例4. 证明,证: 令,则,令,得,故,机动 目录 上页 下页 返回 结束,例5.,设,在,上是单调递减的连续函数,,试证,都有不等式,证明:显然,时结论成立.,(用积分中值定理),当,时,故所给不等式成立 .,机动 目录 上页 下页 返回 结束,明对于任何,例6.,解

3、:,且由方程,确定 y 是 x 的函数 , 求,方程两端对 x 求导, 得,令 x = 1, 得,再对 y 求导, 得,机动 目录 上页 下页 返回 结束,故,例7.,求可微函数 f (x) 使满足,解: 等式两边对 x 求导, 得,不妨设 f (x)0,则,机动 目录 上页 下页 返回 结束,注意 f (0) = 0, 得,机动 目录 上页 下页 返回 结束,例8. 求多项式 f (x) 使它满足方程,解: 令,则,代入原方程得,两边求导:,可见 f (x) 应为二次多项式 ,设,代入 式比较同次幂系数 , 得,故,机动 目录 上页 下页 返回 结束,再求导:,二、有关定积分计算和证明的方法

4、,1. 熟练运用定积分计算的常用公式和方法,2. 注意特殊形式定积分的计算,3. 利用各种积分技巧计算定积分,4. 有关定积分命题的证明方法,思考: 下列作法是否正确?,机动 目录 上页 下页 返回 结束,例9. 求,解: 令,则,原式,机动 目录 上页 下页 返回 结束,例10. 求,解:,机动 目录 上页 下页 返回 结束,例11. 选择一个常数 c , 使,解: 令,则,因为被积函数为奇函数 , 故选择 c 使,即,可使原式为 0 .,机动 目录 上页 下页 返回 结束,例12. 设,解:,机动 目录 上页 下页 返回 结束,例13. 若,解: 令,试证 :,则,机动 目录 上页 下页

5、返回 结束,因为,对右端第二个积分令,综上所述,机动 目录 上页 下页 返回 结束,例14. 证明恒等式,证: 令,则,因此,又,故所证等式成立 .,机动 目录 上页 下页 返回 结束,例15.,试证,使,分析:,要证,即,故作辅助函数,机动 目录 上页 下页 返回 结束,至少存在一点,证明: 令,在,上连续,在,至少,使,即,因在,上,连续且不为0 ,从而不变号,因此,故所证等式成立 .,机动 目录 上页 下页 返回 结束,故由罗尔定理知 ,存在一点,思考: 本题能否用柯西中值定理证明 ?,如果能, 怎样设辅助函数?,提示:,设辅助函数,例15 目录 上页 下页 返回 结束,例16.,设函数

6、 f (x) 在a, b 上连续,在(a, b) 内可导, 且,(1) 在(a, b) 内 f (x) 0 ;,(2) 在(a, b) 内存在点 , 使,(3) 在(a, b) 内存在与 相异的点 , 使,(03考研),机动 目录 上页 下页 返回 结束,证: (1),由 f (x)在a, b上连续,知 f (a) = 0.,所以f (x),在(a, b)内单调增,因此,(2) 设,满足柯西中值定理条件,于是存在,机动 目录 上页 下页 返回 结束,即,(3) 因,在a, 上用拉格朗日中值定理,代入(2)中结论得,因此得,机动 目录 上页 下页 返回 结束,例17. 设,证: 设,且,试证 :,则,故 F(x) 单调不减 ,即 成立.,机动 目录 上页 下页 返回 结束,作业 (总习题五),P264 2 (3) , (5) ; 4 ; 5 (1) ; 7 (2) , (5) ; 10,第四节 目录 上页 下页 返回 结束,

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|