1、华东师大版七年级下册数学课件7学习目标1、让学生进一步理解消元的、让学生进一步理解消元的思想。思想。2、掌握加减消元法解二元一、掌握加减消元法解二元一次方程组的一般步骤次方程组的一般步骤。1 1、解二元一次方程组的解二元一次方程组的基本思路基本思路是什么?是什么?消元消元:二元二元一元一元先消去哪一个未知先消去哪一个未知数比较方便数比较方便?根据根据y的的系数特点系数特点,你能你能消去未知数吗?消去未知数吗?方程组的方程组的同一个同一个未知数的系数未知数的系数有什么有什么特殊特殊的地方吗?的地方吗?Y的系数的系数相等相等2、用代入法、用代入法解方程组解方程组=+=+40222yx yx 例例1
2、 1:解方程组解方程组 =+=+40222yxyx解:-,得,得 x=18 将将 代入代入,得,得18=x2218=+y解这个方程,得解这个方程,得4=y原方程组的解是原方程组的解是=418yx分析分析x +y =222x +y =40-)-X+0-18=-得得分析分析2x +y =40 x +y =22-)X+018=-得得根据根据y的的系数特点,系数特点,你能消去未知数吗?你能消去未知数吗?变式:变式:解方程组解方程组=+574973yxyx分析分析3x +7 y =94x -7 y =5+)7X+014=+得得根据根据y的的系数特点,系数特点,你能消去未知数吗?你能消去未知数吗?解:+,
3、得,得 7x=14 所以原方程组的解是所以原方程组的解是2=x将将 代入代入,得,得2=x9723=+y解这个方程,得解这个方程,得73=y=732yx变式:变式:解方程组解方程组=+574973yxyx解:+,得,得 7x=14 所以原方程组的解是所以原方程组的解是通过通过加或减加或减,让,让“二二元元”化成化成“一元一元”写写出原方程组出原方程组的的解解。一、加减消元,二、求解,三、回代,四、写解一、加减消元,二、求解,三、回代,四、写解2=x将将 代入代入,得,得2=x9723=+y解这个方程,得解这个方程,得73=y解一元一次方程解一元一次方程,求出求出 的值。的值。x=732yx回代
4、回代入,求出入,求出 的值。的值。y先消去哪一个先消去哪一个未知数较方便未知数较方便?步骤步骤上面这些方程组的上面这些方程组的特点特点是什么是什么?解这类方程组解这类方程组基本思路基本思路是什么?是什么?主要步骤主要步骤有哪些?有哪些?特点特点:基本思路基本思路:主要步骤:主要步骤:同同一个未知数的一个未知数的系数相同或互为相反数系数相同或互为相反数加减消元加减消元:二元二元一元一元加减加减消去一个未知数(消去一个未知数(元元)求解求解分别求出分别求出两两个未知数的值个未知数的值写解写解写出方程组的解写出方程组的解=+574973yxyx=+=+40222yxyx当两个二元一次方程中当两个二元
5、一次方程中同一个同一个未知数的系数未知数的系数相反相反或或相等相等时,把这两个方程的两边分别时,把这两个方程的两边分别相加相加或或相减相减,就能消去这,就能消去这个未知数,得到一个个未知数,得到一个一元一元一次方程。这种方法叫做一次方程。这种方法叫做加减加减消元法消元法,简称,简称加减法加减法。加减消元法的加减消元法的概念概念分别相分别相加加y y1.1.(百色(百色中考中考)已知方程组)已知方程组的两个方程的两个方程就可以消去未知数就可以消去未知数分别相分别相减减2.2.已知方程组已知方程组25x-7y=1625x-7y=1625x+6y=1025x+6y=10的两个方程的两个方程就可以消去
6、未知数就可以消去未知数x x一一.填空题:填空题:只要两边只要两边只要两边只要两边测评反馈测评反馈=+13243yxyx二、加减消元法二、加减消元法解解下列下列方程组方程组=+112312.1yxyx)?=1352010.2yxyx)年怀化(三、指出下列方程组求解过程中三、指出下列方程组求解过程中有有错误错误步骤,并给予订正:步骤,并给予订正:7x4y45x4y4解解:,得,得2x44,x03x4y145x4y2解解,得,得2x2x1212x x 6 6解解:,得,得2x44,x4解解:,得,得8x16x 2练练一一练练订正:订正:(1)(2)1、易错点:在用加减法消元时,、易错点:在用加减法
7、消元时,符号符号易出现错误易出现错误2、用加减法解二元一次方程组的、用加减法解二元一次方程组的条件条件:同一个同一个未知数的未知数的系数系数相反相反或或相等,相等,即即同同一未知数系数的一未知数系数的绝对值相等绝对值相等总结:总结:例例2 解方程组解方程组2x-3y=0.55x 6y=4分析分析2x 3y =0.5()2 24x-6y1=5x -6y =4-)-x+0-3=解:解:2得:得:4x 6y=1-得:得:-x=-3x=3把把x=3代入得:代入得:23 3y=0.5解得:解得:y=11/6x=3y=11/6先消去哪一个未知先消去哪一个未知数较方便数较方便?问题问题1 1这两个方程这两个
8、方程直接相加减直接相加减能消去未知数吗?为什么?能消去未知数吗?为什么?问题问题2 2怎样使方程组中某一未知数的系数怎样使方程组中某一未知数的系数相反相反或或相等相等呢?呢?1.先确定消去哪一个未知数先确定消去哪一个未知数;2.再找出系数的再找出系数的最小公倍数最小公倍数;3.确定每一个方程两边应同乘以几确定每一个方程两边应同乘以几.例例2 解方程组解方程组2x-3y=0.55x 6y=4解:解:2得:得:4x 6y=1-得:得:-x=-3x=3把把x=3代入得:代入得:23 3y=0.5解得:解得:y=11/6x=3y=11/6一般步骤一般步骤变形变形:使:使同一个同一个未知数未知数的系数的
9、系数相同相同或互为或互为相反数相反数通过通过加或减加或减,让,让“二元二元”化成化成“一一元元”写写出原方程组的出原方程组的解解。解一元一次方程解一元一次方程,求出求出 的值。的值。x回代回代入,求出入,求出 的值。的值。y变形,变形,加减消元加减消元,求解求解,回代回代,写解,写解练练 习习 题题1 1、下列方程组各选择哪一、下列方程组各选择哪一种消元法来解比种消元法来解比较简便较简便?y=2x3x 4y=52x+3y=214x 5y=72x 4y=1/22x+4y=1/3用代入法用代入法用加减法用加减法用加减法用加减法2 2、加减法与代入法的共同点、加减法与代入法的共同点是什么?什么时候用
10、加法消是什么?什么时候用加法消元,什么时候用减法消元?元,什么时候用减法消元?加减法与代入法的加减法与代入法的共同点共同点是通过是通过“消元消元”,把,把二元二元一次方程组化成一次方程组化成一元一元一次一次方程来求未知数的值方程来求未知数的值.当方程组某个未知数的系数当方程组某个未知数的系数相等相等时,用时,用减法减法消元消元.当方程组某个未知数的系数当方程组某个未知数的系数互为相反数互为相反数时,用时,用加法加法消元消元.3、用加减法解方程组、用加减法解方程组=+1023222010yxyx)年三明(例例4 4:用加减法解方程组用加减法解方程组问题问题:怎样使方程组中怎样使方程组中某某一未知
11、数一未知数的系数的系数相反相反或或相等相等呢?呢?1.先确定消去哪一个未知数先确定消去哪一个未知数;2.再找出系数的再找出系数的最小公倍数最小公倍数;3.最后确定每一个方程两边应同乘以几最后确定每一个方程两边应同乘以几.先消去哪一个先消去哪一个未知数较方便未知数较方便?3x+4y=165x-6y=33问题问题1:1:这两个方程这两个方程直接相加减直接相加减能消能消去未知数吗?为什么?去未知数吗?为什么?例例4:用加减法解方程组:用加减法解方程组3x+4y=165x-6y=33把x=6代入,得 36+4y=16 ,得x=114 +解:3,得 9x+12y=48 2,得 10 x-12y=66 所
12、以,原方程组的解是所以,原方程组的解是先消去哪一个先消去哪一个未知数较方便未知数较方便?解得 x=621y=-解得解得y=-21x=6变形变形:使:使同一个同一个未知数未知数的系数的系数相同相同或互为或互为相反数相反数通过通过加或减加或减,让,让“二元二元”化成化成“一一元元”写写出原方程组的出原方程组的解解。解一元一次方程解一元一次方程,求出求出 的值。的值。x回代回代入,求出入,求出 的值。的值。y变形,变形,加减消元加减消元,求解求解,回代回代,写解,写解练习:用加减法解方程组练习:用加减法解方程组=547965yxyx 一、一、如何使用如何使用加减法加减法解解二元一次二元一次方程组呢方
13、程组呢?1.当两个二元一次方程中当两个二元一次方程中同一个同一个未知数的系数的未知数的系数的绝对值相等时绝对值相等时,可直接使用加减法求解。,可直接使用加减法求解。2.若若同一个同一个未知数的系数未知数的系数绝对值不相等绝对值不相等,则选择把一个,则选择把一个或两个方程或两个方程变形变形,使两个方程变形后的,使两个方程变形后的同同一个未知数的一个未知数的系数的系数的绝对值相等绝对值相等,然后再使用加减法求解。,然后再使用加减法求解。二、用加减法解二、用加减法解二元一次二元一次方程组方程组主要步骤主要步骤有有:(2)加、减加、减 消去一个消去一个未知数(未知数(元元)(3)求解求解 求出一个未知
14、数的值求出一个未知数的值(1)变形变形使使同一个同一个未知数的系未知数的系数数相同相同或互为或互为相反数相反数(5)写解写解写出写出原原方程组的方程组的解解(4)回代回代求出求出另另一个未知数的值一个未知数的值作业:作业:课本课本 P-103 3(1)(2)(3)P-102 练习练习1 选做题选做题:P-103 5 1 1、若方程组若方程组 的解是方程的解是方程 2x-5ky=5 2x-5ky=5的解的解,则则k k为多少为多少?2 2、若若(2x+y)(2x+y)2 2+|x-y+3|=0+|x-y+3|=0,求求x+yx+y的值的值。x+y=8x+y=8 x-y=2 x-y=2大显身手大显
15、身手3、已知已知 和和 都是方程都是方程y=ax+b的解的解,求求ab的值的值。X=-2X=-2 y=4 y=4X=4X=4 y=1 y=1a ax x+b by y=2 2a ax x-b by y=4 44 4.关于关于x x、y y的二元一次方程组的二元一次方程组 2 2x x+3 3y y=1 10 04 4x x-5 5y y=-2 2的解与的解与的解相同,求的解相同,求a、b的值的值 大显身手大显身手a ax x+b by y=2 2a ax x-b by y=4 48.8.关于关于x x、y y的二元一次方程组的二元一次方程组 2 2x x+3 3y y=1 10 04 4x x
16、-5 5y y=-2 2的解与的解与的解相同,求的解相同,求a、b的值的值 大显身手大显身手解:根据题意,只要将方程组解:根据题意,只要将方程组 的解代入方程组的解代入方程组,就可求出,就可求出a a,b b的值的值a ax x+b by y=2 2a ax x-b by y=4 42 2x x+3 3y y=1 10 04 4x x-5 5y y=-2 22 2x x+3 3y y=1 10 04 4x x-5 5y y=-2 2解方程组解方程组得得x x=2 2y y=2 2a ax x+b by y=2 2a ax x-b by y=4 4将将x x=2 2y y=2 2代入方程组代入方程组得得2 2a a+2 2b b=2 22 2a a-2 2b b=4 4解得解得3 3a a=2 21 1b b=-2 2a=a=,b=b=3 32 21 12 2
侵权处理QQ:3464097650--上传资料QQ:3464097650
【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。