ImageVerifierCode 换一换
格式:PPT , 页数:26 ,大小:407.34KB ,
文档编号:4331897      下载积分:22 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-4331897.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(晟晟文业)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(高中数学排列课件2.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

高中数学排列课件2.ppt

1、 在在1.1节的例节的例9中我们看到中我们看到,用分步乘用分步乘法计数原理解决这个问题时法计数原理解决这个问题时,因做了因做了一些重复性工作而显得繁琐一些重复性工作而显得繁琐,能否对能否对这一类计数问题给出一种简捷的方这一类计数问题给出一种简捷的方法呢法呢?探究:探究:问题问题1:从甲、乙、丙从甲、乙、丙3名同学中选出名同学中选出2名参加一项活名参加一项活动,其中动,其中1名同学参加上午的活动,另名同学参加下名同学参加上午的活动,另名同学参加下午的活动,有多少种不同的选法?午的活动,有多少种不同的选法?问题问题2:从从1,2,3,4这这4个数中,每次取出个数中,每次取出3个排成个排成一个三位数

2、,共可得到多少个不同的三位数?一个三位数,共可得到多少个不同的三位数?上面两个问题有什么共同特征?可以用上面两个问题有什么共同特征?可以用怎样的数学模型来刻画?怎样的数学模型来刻画?探究:探究:问题问题1:从甲、乙、丙从甲、乙、丙3名同学中选出名同学中选出2名参加一项活名参加一项活动,其中动,其中1名同学参加上午的活动,另名同学参加下名同学参加上午的活动,另名同学参加下午的活动,有多少种不同的选法?午的活动,有多少种不同的选法?分析:分析:把题目转化为把题目转化为从甲、乙、丙从甲、乙、丙3名同学中选名同学中选2名,名,按照参加上午的活动在前,参加下午的活动在后的按照参加上午的活动在前,参加下午

3、的活动在后的顺序排列,求一共有多少种不同的排法?顺序排列,求一共有多少种不同的排法?上午上午下午下午相应的排法相应的排法甲乙丙乙甲丙丙甲乙甲丙甲乙乙甲乙丙丙甲丙乙第一步:确定参加上午活动的同学即从第一步:确定参加上午活动的同学即从3 3名中任名中任 选选1 1名,有名,有3 3种选法种选法.第二步:确定参加下午活动的同学,有第二步:确定参加下午活动的同学,有2 2种方法种方法根据分步计数原理:根据分步计数原理:3 32=6 2=6 即共即共6 6种方法。种方法。把上面问题中被取的对象叫做把上面问题中被取的对象叫做元素元素,于是问于是问题就可以叙述为:题就可以叙述为:从从3个不同的元素个不同的元

4、素a,b,c中任取中任取2个,然后按照一定个,然后按照一定的顺序排成一列,一共有多少种不同的排列方法?的顺序排成一列,一共有多少种不同的排列方法?ab,ac,ba,bc,ca,cb问题问题2:从从1,2,3,4这这4个数中,每次取出个数中,每次取出3个排成个排成一个三位数,共可得到多少个不同的三位数?一个三位数,共可得到多少个不同的三位数?1234443322444333111244431112224333111222 从从4个不同的元素个不同的元素a,b,c,d 中任取中任取3个,然后按照一定的顺个,然后按照一定的顺序排成一列,共有多少种不同的排列方法?序排成一列,共有多少种不同的排列方法?

5、abc,abd,acb,acd,adb,adc;bac,bad,bca,bcd,bda,bdc;cab,cad,cba,cbd,cda,cdb;dab,dac,dba,dbc,dca,dcb.有此可写出所有的三位数:有此可写出所有的三位数:123,124,132,134,142,143;213,214,231,234,241,243,312,314,321,324,341,342;412,413,421,423,431,432。基本概念基本概念1、排列:、排列:一般地,从一般地,从n个不同中取出个不同中取出m(m n)个元素,个元素,按照一定的顺序排成一列,叫做从按照一定的顺序排成一列,叫做从

6、n个不同元个不同元素中取出素中取出m个元素的一个排列。个元素的一个排列。说明:说明:1 1、元素不能重复。、元素不能重复。n n个中不能重复,个中不能重复,m m个中也不能重复。个中也不能重复。2 2、“按一定顺序按一定顺序”就是与位置有关,这是判断一个问题是就是与位置有关,这是判断一个问题是否是排列问题的关键。否是排列问题的关键。3 3、两个排列相同,当且仅当这两个排列中的元素完全相同,两个排列相同,当且仅当这两个排列中的元素完全相同,而且元素的排列顺序也完全相同。而且元素的排列顺序也完全相同。4 4、m mn n时的排列叫选排列,时的排列叫选排列,m mn n时的排列叫全排列。时的排列叫全

7、排列。5 5、为了使写出的所有排列情况既不重复也不遗漏,最好采用、为了使写出的所有排列情况既不重复也不遗漏,最好采用“树形图树形图”。2、排列数:、排列数:从从n n个不同的元素中取出个不同的元素中取出m(mn)m(mn)个元素个元素的所有排列的个数,叫做从的所有排列的个数,叫做从n n个不同的元素中个不同的元素中取出取出m m个元素的排列数。用符号个元素的排列数。用符号 表示。表示。mnA“排列排列”和和“排列数排列数”有什么区别和联有什么区别和联系?系?排列数,而不表示具体的排列。所有排列的个数,是一个数;mn“排列数”是指从 个不同元素中,任取个元素的mnA所以符号只表示nm“一个排列”

8、是指:从 个不同元素中,任取按照一定的顺序排成一列,不是数;个元素233 26A 问题中是求从个不同元素中取出个元素的问题中是求从个不同元素中取出个元素的排列数,记为排列数,记为 ,已经算得已经算得23A344 3 224A 问题问题2中是求从中是求从4个不同元素中取出个不同元素中取出3个元素的个元素的排列数,记为,已经算出排列数,记为,已经算出34A探究:探究:从从n n个不同元素中取出个不同元素中取出2 2个元素的排列个元素的排列数数 是多少?是多少?2nA呢呢?mnA呢呢?3nA 第第1位位第第2位位第第3位位第第m位位n种种(n-1)种种(n-2)种种(n-m+1)种种2(1)nAn

9、n3(1)(2)nAn nn(1)(2)(1)mnAn nnnm(1)(1)排列数公式(排列数公式(1 1):):)*,)(1()2)(1(nmNnmmnnnnAmn当当m mn n时,时,123)2)(1(nnnAnn正整数正整数1 1到到n n的连乘积,叫做的连乘积,叫做n n的阶乘,用的阶乘,用 表示。表示。!nn n个不同元素的全排列公式:个不同元素的全排列公式:!nAnn(2)(2)排列数公式(排列数公式(2 2):):)!(!mnnAmn说明:说明:1 1、排列数、排列数公式公式的第一个常用来计算,第二个常用来证明。的第一个常用来计算,第二个常用来证明。为了使当为了使当m mn n

10、时上面的公式也成立,规定:时上面的公式也成立,规定:1!0 2 2、对于、对于 这个条件要留意,往往是解方程时的隐含条这个条件要留意,往往是解方程时的隐含条件。件。nm例例1 1、某年全国足球甲级、某年全国足球甲级A A组联赛共有组联赛共有1414个队参加,个队参加,每队要与其余各队在主、客场分别比赛一次,共每队要与其余各队在主、客场分别比赛一次,共进行多少场比赛?进行多少场比赛?解:解:14个队中任意两队进行个队中任意两队进行1次主场比赛与次主场比赛与1次客场比赛,次客场比赛,对应于从对应于从14个元素中任取个元素中任取2个元素的一个排列,因此,个元素的一个排列,因此,比赛的总场次是比赛的总

11、场次是1821314214A例例2 2:(1)(1)有有5 5本不同的书,从中选本不同的书,从中选3 3本送给本送给3 3名同学,每名同学,每人各人各1 1本,共有多少种不同的送法?本,共有多少种不同的送法?(2)(2)有有5 5种不同的书,买种不同的书,买3 3本送给本送给3 3名同学,每人各名同学,每人各1 1本,共有多少种不同的送法?本,共有多少种不同的送法?例例3 3:某信号兵用红,黄,蓝:某信号兵用红,黄,蓝3 3面旗从上到下挂在竖面旗从上到下挂在竖直的旗杆上表示信号,每次可以任挂直的旗杆上表示信号,每次可以任挂1 1面、面、2 2面或面或3 3面,并且不同的顺序表示不同的信号,一共

12、可以表面,并且不同的顺序表示不同的信号,一共可以表示多少种不同的信号?示多少种不同的信号?例例4:用:用0到到9这这10个数字,可以组成多少个没有重复个数字,可以组成多少个没有重复数字的三位数?数字的三位数?百位十位个位解法一:对排列方法分步思考。解法一:对排列方法分步思考。648899181919AAA6488992919AA从位置出发从位置出发解法二:对排列方法分类思考。符合条件的三位数解法二:对排列方法分类思考。符合条件的三位数可分为两类:可分为两类:百位百位 十位十位 个位个位A390百位百位 十位十位 个位个位A290百位百位 十位十位 个位个位A2964822939AA根据加法原理

13、根据加法原理从元素出发分析从元素出发分析解法三:间接法解法三:间接法.从从0到到9这十个数字中任取三个数字的排列数为这十个数字中任取三个数字的排列数为 ,A310.648898910A310A29 所求的三位数的个数是所求的三位数的个数是其中以其中以0为排头的排列数为为排头的排列数为 .A29逆向思维法逆向思维法个。有种,故符合题意的偶数有、千位上的排列数不能选),十位、百位种(排列数有中选);万位上的数字、种(从有)个位上的数字排列数解法一:(正向思考法331312331312542AAAAAA百位十位个位千位万位13A33A12A例例5:由数字:由数字1、2、3、4、5组成没有重复数字的五

14、位组成没有重复数字的五位数,其中小于数,其中小于50000的偶数共有多少个?的偶数共有多少个?有约束条件的排列问题有约束条件的排列问题百位十位个位千位万位例例5:由数字:由数字1、2、3、4、5组成没有重复数字的五位组成没有重复数字的五位数,其中小于数,其中小于50000的偶数共有多少个?的偶数共有多少个?个共有:个,符合题意的偶数的数减去偶数中大于个,再数个,减去其中奇数的个位数有数字的组成无重复、)由解法二:(逆向思维法365000055432133124413553312441355AAAAAAAAAA有约束条件的排列问题有约束条件的排列问题有约束条件的排列问题有约束条件的排列问题例例6

15、:6个人站成前后两排照相,要求前排个人站成前后两排照相,要求前排2人,后排人,后排4人,那人,那么不同的排法共有(么不同的排法共有()A.30种种 B.360种种 C.720种种 D.1440种种 C例例7:有:有4个男生和个男生和3个女生排成一排,按下列要求各有多少种个女生排成一排,按下列要求各有多少种不同排法:不同排法:(1)男甲排在正中间;)男甲排在正中间;(2)男甲不在排头,女乙不在排尾;)男甲不在排头,女乙不在排尾;(3)三个女生排在一起;)三个女生排在一起;(4)三个女生两两都不相邻;)三个女生两两都不相邻;(5)全体站成一排,甲、乙、丙三人自左向右顺序不变;)全体站成一排,甲、乙

16、、丙三人自左向右顺序不变;(6 6)若甲必须在乙的右边(可以相邻,也可以不相邻),有多少种站法?若甲必须在乙的右边(可以相邻,也可以不相邻),有多少种站法?对于相邻问题,常用对于相邻问题,常用“捆绑法捆绑法”对于不相邻问题,常用对于不相邻问题,常用“插空法插空法”例例8 8、三个女生和五个男生排成一排,以下三个女生和五个男生排成一排,以下各各有多少有多少种不同的排法?种不同的排法?3565A A=120 120=14400女生必须全排在一起女生必须全排在一起女生必须全分开女生必须全分开两端都不能排女生两端都不能排女生两端不能都排男生两端不能都排男生6363A A=720 6=43202656A

17、 A=20 720=144002636A A=6 720=4320练习:练习:某小组某小组7 7人排队照相,以下各有几种不同的排法?人排队照相,以下各有几种不同的排法?1 1)若排成两排,前排)若排成两排,前排3 3人,后排人,后排4 4人;人;2 2)若排成两排,前排)若排成两排,前排3 3人,后排人,后排4 4人,甲必排在前排,乙人,甲必排在前排,乙必排在后排;必排在后排;3 3)甲不在左端,乙不在右端;)甲不在左端,乙不在右端;667575=3720A-2A+A4 4)甲乙不相邻;)甲乙不相邻;5 5)甲、乙、丙均不相邻;)甲、乙、丙均不相邻;6 6)甲乙必须间隔)甲乙必须间隔2 2人;

18、人;762762=3600A-A A4345=1440A A224254=960A A A77A5040115345A A A14405256=3600A A例例1 1、解方程:、解方程:232100 xxAA 例例2 2、求、求 的值的值.1432nnnAA1,2答案答案3.4答案答案。例证明:例证明:m mm mm m-1 1n n+1 1n nn nA A=A A+m mA A。证明:右边证明:右边 n n!n n!m m(n nm m)!(n nm m1 1)!(1 1)!(1 1)!n nn nm mn nm mn nm m (n n 1 1)n n!(n nm m1 1)!(n n

19、1 1)!(n n1 1)m m!左左m mn n1 1A Amnn!A=(n-m)!排列问题,是取出排列问题,是取出m m个元素后,还要按一个元素后,还要按一定的顺序排成一列,取出同样的定的顺序排成一列,取出同样的m m个元素,只个元素,只要要,就视为完成这件事的两种,就视为完成这件事的两种不同的方法(两个不同的排列)不同的方法(两个不同的排列)由排列的定义可知,由排列的定义可知,也就是说与位置有关的问题才能归结为排,也就是说与位置有关的问题才能归结为排列问题当元素较少时,可以根据排列的意义列问题当元素较少时,可以根据排列的意义写出所有的排列写出所有的排列 思考题思考题 三张卡片的正反面分别写着数字三张卡片的正反面分别写着数字2 2和和3 3,4 4和和5 5,7 7和和8 8,若将这三张卡片,若将这三张卡片的正面或反面并列组成一个三位数,的正面或反面并列组成一个三位数,可以得到多少个不同的三位数?可以得到多少个不同的三位数?

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|