1、全等三角形的判定全等三角形的判定八年级数学组八年级数学组ASA.AAS【学习目标学习目标】1、掌握三角形全等的“角边角”“角角边”条件能运用全等三角形的条件,解决简单的推理证明问题。2经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程。教学重点:教学重点:已知两角一边的三角形全等探究。教学难点:教学难点:灵活运用三角形全等条件证明。三边对应相等的两个三角形全等(可以简写三边对应相等的两个三角形全等(可以简写为为“边边边边边边”或或“SSS”)。)。ABCDEF在在ABC和和 DEF中中 ABC DEF(SSS)AB=DEBC=EFCA=FD知识梳理知识梳理:在在ABC与与DEF
2、中中ABC DEF(SAS)两边和它们的夹角对应相等的两个三角形全两边和它们的夹角对应相等的两个三角形全等。等。(可以简写成可以简写成“边角边边角边”或或知识梳理知识梳理:FEDCBAAC=DFC=FBC=EF知识梳理知识梳理:DCBAABDABC 观察下图中的观察下图中的ABC,画一个画一个A B C ,使,使A B=AB,A=A,B=B结论结论:两角及夹边对应相等的两角及夹边对应相等的两个三角形全等两个三角形全等(ASA).(ASA).观察:观察:A B C 与与 ABC 全等吗?怎么验证?全等吗?怎么验证?画法画法:1.画画 A B=AB;2.在在A B 的同旁画的同旁画DA B=A,E
3、B A=B,A D、B E交于点交于点CACBAEDCB思考:这两个三角形全等是满足哪三个条件?思考:这两个三角形全等是满足哪三个条件?在在 ABC和和ABC中中 ABC ABC(ASA)B=BBC=BCC=C几何语言几何语言:ABCCBA例例1 1、如图、如图 ,AB=AC,B=C,AB=AC,B=C,那么那么ABEABE和和ACDACD全等全等吗?为什么?吗?为什么?证明证明:在在ABE与与ACD中中 B=C (已知)(已知)AB=AC (已知)(已知)A=A (公共角)(公共角)ABE ACD(ASA)AEDCB在在ABC和和DEF中,中,A=D,B=E,BC=EF,ABC和和DEF全等
4、吗?为什么?全等吗?为什么?ACBEDF探索探索分析:分析:能否转化为能否转化为ASA?证明:证明:A=D,B=E(已知已知)C=F(三角形内角和定理三角形内角和定理)B=E 在在ABC和和DEF中中BC=EF C=FABC DEF(ASA)你能从上题中得到什么结论?你能从上题中得到什么结论?两角及一角的对边对应相等的两角及一角的对边对应相等的两个三角形全等(两个三角形全等(AASAAS)。)。在在 ABC和和ABC中中 ABC ABC(AAS)A=AB=BBC=BC几何语言几何语言:ABCCBA (ASA)(AAS)归纳归纳ABCDO1234 如图:已知如图:已知ABC=DCBABC=DCB
5、,3=43=4,求证求证:(1)ABCDCB。(2)1=21=2例例2 2如图如图,小明不慎将一块三角形模具打碎为两块小明不慎将一块三角形模具打碎为两块,他是否可他是否可以只带其中的一块碎片到商店去以只带其中的一块碎片到商店去,就能配一块与原来一就能配一块与原来一样的三角形模具吗样的三角形模具吗?如果可以如果可以,带哪块去合适带哪块去合适?你能说明其中理由吗你能说明其中理由吗?怎么办?可以帮帮怎么办?可以帮帮我吗?我吗?AB(1)今天我们又学习了两个判定三角形全等的方法是:(2)三角形全等的判定方法共有 (3)会根据已知两角及一边画三角形课堂小结课堂小结ASA.AASASA.AASSSS.SAS你能行吗你能行吗?AB=DE可以吗?可以吗?ABDE如图:已知如图:已知ABDE,ACDF,BE=CF。求证:。求证:ABC DEF。ABCDEF堂清堂清证明:证明:BE=CF(已知已知)BC=EF(等式性质等式性质)B=E 在在ABC和和DEF中中BC=EF C=FABC DEF(ASA)ABDE ACDF(已知已知)B=DEF ,ACB=F