1、2叫做叫做4的平方根的平方根知识回顾知识回顾224(2次方根次方根)421632852322叫做叫做8的立方根的立方根(3次方根次方根)2叫做叫做16的的4次方根次方根2叫做叫做32的的5次方根次方根2na2叫做叫做 的的n次方根次方根a推广到推广到n次次推广到推广到n次次如果如果 ,则,则 叫做叫做 的的n次方根次方根nxaxa概念形成概念形成如果如果 ,则,则 叫做叫做 的平方根的平方根2xaxa(2次方根次方根)如果如果 ,则,则 叫做叫做 的立方根的立方根3xaxa(3次方根次方根)表示方法:表示方法:,其中,其中 叫做算术平方根。叫做算术平方根。a 表示方法:表示方法:3aa 一般地
2、,如一般地,如 ,那么那么x叫做叫做a的的n次方根次方根(*1)nxa nNn且概念理解概念理解根据根据n次方根的概念,求出下列数的次方根的概念,求出下列数的n次方根。次方根。(1)4的平方根是的平方根是 (2)27的立方根是的立方根是 (3)16的的4次方根是次方根是 (4)32的的5次方根是次方根是 (5)-32的的5次方根是次方根是 (6)0的的7次方根是次方根是 (7)的立方根是的立方根是6a2a2和和-232和和-22-20(2)27的立方根是的立方根是3 (4)32的的5次方根是次方根是2 (5)-32的的5次方根是次方根是-2看看看看(2)(4)(5)分别求几次方根?有几个?分别
3、求几次方根?有几个?3和和5有有1个个(奇数奇数)结论:实数结论:实数 的奇次方根只有的奇次方根只有1个,用个,用 表示,表示,n是奇数是奇数naa(1)4的平方根是的平方根是2和和-2 (3)16的的4次方根是次方根是2和和-2看看看看(1)(3)分别求几次方根?有几个?分别求几次方根?有几个?2和和4有有2个个再看看再看看4和和16是正数还是负数?是正数还是负数?(偶数偶数)正数正数结论:正数结论:正数 的偶次方根有的偶次方根有2个,它们分别为相反数,个,它们分别为相反数,用用 表示,表示,n是偶数,是偶数,na0a a说明说明当当n是奇数,根式的值是唯一的;是奇数,根式的值是唯一的;当当
4、n是偶数且是偶数且a0,根式的值有两个,同时互为,根式的值有两个,同时互为相反数;相反数;负数没有偶次方根;负数没有偶次方根;0的任何次方根都是的任何次方根都是0.axn(当当n是奇数是奇数)(当当n是偶数是偶数,且且a0)nx=anx=a0的的n次方根为次方根为0我们知道我们知道00n猜想:负数的偶次方根有几个?猜想:负数的偶次方根有几个?负数没有偶次方根负数没有偶次方根根指数根指数根式根式na被开方数被开方数*1nNn(且)练练习习)(.0,0,|)(,为偶数当为奇数当naaaaanaann633622331241233444a=a=a=a(a 0)a=a=a=a(a 0)mmnna=a(
5、a0,m,n N*,n1)且探究探究m-na=(a0,m、nN*,n1)1(0)nnaaa例例11、a-32、x3y-23、2(m+n)-2231x4、231x5、2)3(x6、3a12x3123yx3x22n)(m2 2x911-212-nn11a=(a 0);aa1a=(a 0,nN*,n 1).am-nmnn11a=(a 0,m,nN*,n 1)ma想一想想一想mnmnaa说说明明1mnnmaa说说明明强调演示强调演示 将根式写成分数指数幂的形式或将分数指数幂写成根式的形式时,将根式写成分数指数幂的形式或将分数指数幂写成根式的形式时,要注意的要注意的m、n的对应位置关系,分数指数的分母为
6、根式的根指数,的对应位置关系,分数指数的分母为根式的根指数,分子为根式中被开方数的指数分子为根式中被开方数的指数mnmnaa1mnnmaa练练习习 练习练习4.1.1 注意注意 0的正分数指数幂是的正分数指数幂是0,0的负分数指数幂的负分数指数幂没有意义没有意义。整数指数幂的运算性质对于有理指数幂也整数指数幂的运算性质对于有理指数幂也同样适用同样适用,即对于任意有理数即对于任意有理数r,s,均有下面的,均有下面的运算性质:运算性质:),0,0()(3(),0()(2(),0()1(QrbabaabQsraaaQsraaaarrrrssrsrsr求值:求值:512-105a b(ab),都都是是
7、正正数数 55121-210522a=ab=a b=b想一想想一想 在前面的学习中,我们已经把指数由在前面的学习中,我们已经把指数由正整数推广到了有理数,那么能不能继续正整数推广到了有理数,那么能不能继续推广到无理数范围(即实数范围)呢推广到无理数范围(即实数范围)呢?推推 理理52=25 51/2=525=说明说明 以上结果无需算出,只需了解结果也是一确以上结果无需算出,只需了解结果也是一确定实数定实数.探究探究225225由上表发现:由上表发现:2的不足近似值从小于的不足近似值从小于 方向逼近方向逼近 时,时,的近似值从小于的近似值从小于 的方向逼近的方向逼近 .22252525同理,当同
8、理,当 的过剩近似值从大于的过剩近似值从大于 的方向逼的方向逼近时,近时,的近似值从大于的近似值从大于 的方向逼近的方向逼近 .252522常数常数25 1.无理数指数幂无理数指数幂ax(a0,x是无理数)是无理数)是一个确定的实数是一个确定的实数.2.有理数指数幂的运算性质同样适用有理数指数幂的运算性质同样适用于无理数指数幂于无理数指数幂.(2)(am)n=amn(a0)(3)(ab)n=anbn(a,b0)(4)aman=am-n(a0)(5)(b0)整数指数幂有以下运算性质:整数指数幂有以下运算性质:nnnbaba)(当当a0时,时,a0=1,(6)(a-3)2=(ab)-3=a-3a-
9、5=2)ba(6a 12a 33ba 2a22ba 1nnaa整数指数幂有理数指数幂无理数指数幂分数指数幂根式 xn=a(当当n是奇数是奇数);nax(当当n是偶数是偶数,且且a0).nax 负数没有偶次方根;负数没有偶次方根;0的任何次方根都是的任何次方根都是0.mmnna=a(a 0,m,nN*,n 1)且),0,0()(3(),0()(2(),0()1(RrbabaabRsraaaRsraaaarrrrssrsrsr实数指数幂的运算法则1.用根式的形式表示下列各式用根式的形式表示下列各式(a0)a1/3 ,a3/2 ,a-1/2 ,a-2/5 解:解:335211a,a=a a,aa2.
10、求下列各式求下列各式:);0()1(32 nmnm );()4(44nmnm );()3(44nmnm ;)2(3232aaa解:解:23(1)m+n;12+2133(2)aa=a=a;(3)n-m;(4)m-n.3.化简下列各式化简下列各式:4=-a-1.=xy.解解:(1)原式原式=(1-a)(a-1)-43=-(a-1)(a-1)-43=-(a-1)41(2)原式原式=xy2(xy-1)(xy)213121=(xy2x y-)x y 3121212121=(x y )x y 2323312121=x y x y 21212121(3)(1-a)(a-1)-2(-a).2121a-10.(
11、3)由由(-a)知知-a0,21原式原式=(1-a)(1-a)-1(-a)41=(-a).41431(1)(1-a);(a-1)2-13(2)xyxyxy;4.计算下列各式计算下列各式:3411052(1);a a a;113222(2)2xxx;)3(652331aaa 1211133442(4)436xx yxy 解:解:13 4+-02 10 51113-0-22222211 5-6 61211-3322(1)=a=a=1;2(2)=x x-2x x=x-2x=1-;x(3)=a=a;(4)=-12x y-6x y=2xy.原原式式原原式式原原式式原原式式5.比较比较365,11,123
12、的大小的大小.6632366666365=5=125,11=11=121,121123 125 121 123 123 11又又又又所所以以解:解:6.化简化简41333322333a-8a bb(1-2)aa4b+2 ab+a解:解:111133332112133333331113331133211211333333a(a-8b)a-2b=a4b+2a b+aaaa-2ba=a4b+2a b+aa-2b原原式式111211233333331133211211333333111333aa-2b4b+2a b+aa=a4b+2a b+aa-2b=aaa=a.练习(第练习(第54页)页)3213-3453245332111.a=a;a=a;a=;a=aa2333234422423351533-6532222.(1)x=x;(2)a+b=a+b;(3)m-n=m-n;(4)m-n=m-n;m(5)p q=p q;(6)=m=mm322311132112611 15111 2+-+-24 88333 3663.(1)=();773(2)2 33 2=23=6;24(3)=a=a;(4)x-4x=1-x
侵权处理QQ:3464097650--上传资料QQ:3464097650
【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。