1、2.1.1函数的概念和图象(一)第2章2.1函数的概念学习目标1.理解函数、定义域、值域的概念.2.了解构成函数的三要素.3.正确使用函数符号,会求简单函数的定义域、值域.题型探究问题导学内容索引当堂训练问题导学问题导学思考思考知识点一函数的概念初中是用两个变量之间的依赖关系定义函数,用这种观点能否判断只有一个点(0,1),是函数图象?答案答案答案因为只有一个点,用运动变化的观点判断就显得牵强,因此有必要引入用集合和对应来定义的函数概念.设A,B是两个非空的数集,如果按某种 ,对于集合A中的每一个元素x,在集合B中都有 的元素y和它对应,那么这样的对应叫做从A到B的一个函数,通常记为.其中,所
2、有的输入值x组成的集合A叫做函数yf(x)的定义域.梳理梳理对应法则f唯一yf(x),xA思考思考知识点二判断两个变量是否具有函数关系的方法用函数的上述定义可以轻松判断:A0,B1,f:01,满足函数定义,其图象(0,1)自然是函数图象.试用新定义判断下列对应是不是函数?(1)f:求周长;A三角形,BR;答案答案答案不是,因为集合A不是数集.(2)答案答案答案是.对于数集A中的每一个x,在数集B中都有唯一确定的y和它对应.x 1 2 3y 3 2 1;(3)答案答案是.对于数集A中的每一个x,在数集B中都有唯一确定的y和它对应.;x 1 2 3y 1 1 1(4)答案答案答案不是.一个x1,对
3、应了三个不同的y,违反了“唯一确定”.;(5)答案答案不是.x3没有相应的y与之对应.x 1 1 1y 1 2 3x 1 2 3y 1 2 梳理梳理(1)如果一个输入值对应到唯一的输出值,就称这种对应为单值对应.(2)检验两个变量之间是否具有函数关系的方法定义域和对应法则是否给出;根据对应法则,确认是否为两个非空数集上的单值对应.思考思考 知识点三值域下图所示的“箭头图”表示的对应关系是否为函数?如果是,3是不是输出值?答案答案答案对于A中任意一个元素,B中都有唯一的元素和它对应,故上图中的对应关系是函数,但B中元素3没有输入值与之对应,故3不是输出值.梳理梳理若A是函数yf(x)的定义域,则
4、对于A中的每一个x,都有一个输出值y与之对应.我们将所有输出值y组成的集合称为函数的值域.对于函数f:AB而言,如果值域是C,那么CB,不能将B当作函数的值域.题型探究题型探究命题角度命题角度1给出三要素判断是否为函数给出三要素判断是否为函数例例1判断下列对应是否为集合A到集合B的函数.(1)AR,Bx|x0,f:xy|x|;解答类型一函数关系的判断解解输入值0在B中没有输出值与之对应,故不是集合A到集合B的函数.(2)AZ,BZ,f:xyx2;解解对于集合A中的任意一个整数x,按照对应法则f:xyx2在集合B中都有唯一一个确定的整数x2与其对应,故是集合A到集合B的函数.解答(3)AZ,BZ
5、,f:xy ;解解集合A中的负整数没有平方根,在集合B中没有对应的输出值,故不是集合A到集合B的函数.(4)Ax|1x1,B0,f:xy0.解解对于集合A中任意一个输入值x,按照对应法则f:xy0在集合B中都有唯一一个确定的输出值0和它对应,故是集合A到集合B的函数.判断对应关系是否为函数,主要从以下三个方面去判断(1)A,B必须是非空数集.(2)A中任何一个输入值在B中必须有输出值与其对应.(3)A中任何一个输入值在B中必须有唯一一个输出值与其对应.反思与感悟解析解析中,当x0时,输出值为0,而集合B中没有0;中,当x1时,输出值为0,而集合B中没有0;正确;不正确.跟踪训练跟踪训练1下列对
6、应是从集合A到集合B的函数的是_.(填序号)AR,BxR|x0,f:x ;AN,BN*,f:x|x1|;AxR|x0,BR,f:xx2;AR,BxR|x0,f:x .答案解析解析解析中至少存在一处如x0,一个横坐标对应两个纵坐标,这相当于A中至少有一个输入值在B中对应的输出值不唯一,故不是函数图象,其余均符合函数定义.命题角度命题角度2给给出图形判断是否为函数出图形判断是否为函数图象图象例例2下列图形中可以作为函数图象的是_.(填序号)答案解析在图形中,横坐标相当于输入值,纵坐标相当于输出值.判断图形是否为函数图象,就是看横坐标与纵坐标是否单值对应.反思与感悟解析解析中,定义域为2,0,不符合
7、题意;中,定义域为2,2,值域为0,2,符合题意;中,存在一个x值对应2个y值的情形,不是函数;中,定义域为2,2,但值域不是0,2,不符合题意.跟踪跟踪训练训练2若函数yf(x)的定义域为Mx|2x2,值域为Ny|0y2,则函数yf(x)的图象可能是_.(填序号)答案解析例例3求下列函数的定义域.类型二已知函数的解析式,求其定义域解答解解由于00无意义,故x10,即x1.又x20,即x2,所以x2且x1.解答解答求函数定义域的常用依据(1)若f(x)是分式,则应考虑使分母不为零.(2)若f(x)是偶次根式,则被开方数大于或等于零.(3)若f(x)是由几个式子构成的,则函数的定义域是几个部分定
8、义域的交集.(4)若f(x)是实际问题的解析式,则应符合实际问题,使实际问题有意义.反思与感悟跟踪跟踪训练训练3函数f(x)的定义域为_.x|x0且x1故函数f(x)的定义域为x|x0且x1.答案解析例例4(1)已知函数f(x),若f(a)4,则实数a_.类型三对于f(a),f(x)的理解a216,a14.14答案解析求f(2),g(2)的值;解答又因为g(x)x22,所以g(2)2226.求f(g(2)的值;求f(a1),g(a1).解答g(a1)(a1)22a22a3.(1)f(x)中的x可以是一个具体的数,也可以是一个字母或者是一个表达式,不管是什么,只需把相应的x都换成对应的数或式子.
9、(2)f(a)有3个含义a定义域.f(a)值域.输入值a按对应法则f对应输出值f(a).反思与感悟解答(2)求f(1x)及f(f(x).解答例例5求下列函数的值域.(1)yx1,x1,2,3,4,5;解答解解按照对应法则,输入值1,2,3,4,5分别对应输出值2,3,4,5,6,值域为2,3,4,5,6.类型四求函数值域解答(2)yx22x3,x0,3);解解y(x1)22,x0,3),(x1)20,4),(x1)222,6),这个函数的值域为2,6).解答这个函数的值域为y|y2.解答解解这个函数的定义域为1,),求函数值域的方法(1)观察法:对于一些比较简单的函数,其值域可通过观察得到.(
10、2)配方法:此方法是求“二次函数类”值域的基本方法,即把函数通过配方转化为能直接看出其值域的方法.(3)分离常数法:此方法主要是针对有理分式,即将有理分式转化为“反比例函数类”的形式,便于求值域.(4)换元法:对于一些无理函数(如yaxb ),通过换元把它们转化为有理函数,然后利用有理函数求值域的方法,间接地求解原函数的值域.反思与感悟跟踪训练跟踪训练5求下列函数的值域.(1)f(x)x2x1,x1,0,1,2,3;解答解解由题意,得f(1)1,f(0)1,f(1)3,f(2)7,f(3)13,所以函数f(x)的值域为1,3,7,13.(2)f(x)x22(x1,3);解答解解由题意,得抛物线
11、yx22开口向上,对称轴是y轴,所以函数f(x)x22在1,3上的最小值为2,最大值为11,所以函数f(x)的值域是2,11.所以f(x)2,所以函数f(x)的值域为(,2)(2,).解答由于y2,所以函数f(x)的值域为(,2)(2,).所以yt2t1(t0).因为抛物线yt2t1开口向上,解答当堂训练当堂训练1.对于函数yf(x),以下说法正确的是_.(填序号)y是x的函数;对于不同的x,y的值也不同;f(a)表示当xa时函数f(x)的值,是一个常量;f(x)一定可以用一个具体的式子表示出来.答案23451答案234510,1)答案234511,)234511答案解析5.下列各组函数是同一
12、函数的是_.(填序号)答案解析2345123451规律与方法1.函数的本质:两个非空数集间的一种单值对应.由于函数的定义域和对应法则一经确定,值域也随之确定,所以判断两个函数是否相等只需两个函数的定义域和对应法则一样即可.2.定义域是一个集合,所以需要写成集合的形式,在已知函数解析式又对x没有其他限制时,定义域就是使函数式有意义的输入值x的集合.3.在yf(x)中,x是自变量,f代表对应法则,不要因为函数的定义而认为自变量只能用x表示,其实用什么字母表示自变量都可以,关键是符合定义,x只是一个较为常用的习惯性符号,也可以用t等表示自变量.关于对应法则f,它是函数的本质特征,好比是计算机中的某个
13、“程序”,当在f()中的括号内输入一个值时,在此“程序”作用下便可输出某个数据,即函数值.如f(x)3x5,f表示“自变量的3倍加上5”,如f(4)34517.我们也可以将“f”比喻为一个“数值加工器”(如图),当投入x的一个值后,经过“数值加工器f”的“加工”就得到一个对应值.本课结束团Tiffany,a 16yearold girl,was very shy.Last September,her best frien“I was really sad the moment I heard the bad news and I didnt know what to do,”Tiffany r
14、ecalled.“I shut myself in my room for a whole week.It was then that my aunt took me to a sports club one Saturday and I saw so many young people playing different kinds of sports there.I signed up for a beginners course in volleyball and since then I have been playing this sport.Now I practice twice
15、 a week there.It is wonderful playing sports in this club and I have made lots of friends as well.2 ”The most basic aim of playing sports is that you can improve your health even if you are not very good at sports.Besides,you can get to know a circle of people at your age while playing sports.3 Sinc
16、e she joined the sports club,s I got used to the life here.And now I know lots of(5)_ here.For example,when I meet my friend on the street,I usually(6)_ him like this,“Hey,where are you going?”In our country if someone asks this,people may get(7)_ but in this country people wont.Of course,there are
17、some other interesting things here.Ill tell you about them next time.he has opened up herself and now she has become very active and enjoys meeting and talking with others.1Its polite for girls to kiss each other on the side of the face.s also become more confident.团圆圆一家在台湾可受欢迎了。每天,小朋友们排着长队,等着跟它们合影留念。从“排着长队”体现出每天喜欢它们的人不计其数,特别受选D.A.根据同类项合并法则,与不是同类项,不能合并,故本选项错误;B.根据算术平方根的定义,=3,故本选项错误;C.根据同底数幂的乘法aa2=a3,故本选项错误;D.根据积的乘方,(2a3)2=4a6,故本选项正确.欢迎。从“合影留念”体现出大家都想和大熊猫留住最美丽的瞬间以作纪念。Nothing can be accomplished without norms or standards.精品资料!感谢阅读下载!
侵权处理QQ:3464097650--上传资料QQ:3464097650
【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。