1、DNA的复制与修复遗传信息传递的遗传信息传递的 中心法则中心法则蛋白质蛋白质翻译翻译转录转录逆转录逆转录复制复制复制复制DNARNA生物的遗传信息以密码的形式储生物的遗传信息以密码的形式储存在存在DNA分子上,表现为特定的核苷分子上,表现为特定的核苷酸排列顺序。在细胞分裂的过程中,酸排列顺序。在细胞分裂的过程中,通过通过DNA复制复制把亲代细胞所含的遗传把亲代细胞所含的遗传信息忠实地传递给两个子代细胞。在信息忠实地传递给两个子代细胞。在子代细胞的生长发育过程中,这些遗子代细胞的生长发育过程中,这些遗传信息通过传信息通过转录转录传递给传递给RNA,再由,再由RNA通过通过翻译翻译转变成相应的蛋白
2、质多转变成相应的蛋白质多肽链上的氨基酸排列顺序,由蛋白质肽链上的氨基酸排列顺序,由蛋白质执行各种各样的生物学功能,使后代执行各种各样的生物学功能,使后代表现出与亲代相似的遗传特征。后来表现出与亲代相似的遗传特征。后来人们又发现,在宿主细胞中一些人们又发现,在宿主细胞中一些RNA病毒能以自己的病毒能以自己的RNA为模板为模板复制复制出新出新的病毒的病毒RNA,还有一些,还有一些RNA病毒能以病毒能以其其RNA为模板合成为模板合成DNA,称为,称为逆转录逆转录这是中心法则的补充。这是中心法则的补充。中心法则总结了生物体内遗传信息的流动规律,揭示遗传的分子基础,不仅使人中心法则总结了生物体内遗传信息
3、的流动规律,揭示遗传的分子基础,不仅使人们对细胞的生长、发育、遗传、变异等生命现象有了更深刻的认识,而且以这方面们对细胞的生长、发育、遗传、变异等生命现象有了更深刻的认识,而且以这方面的理论和技术为基础发展了基因工程,给人类的生产和生活带来了深刻的革命。的理论和技术为基础发展了基因工程,给人类的生产和生活带来了深刻的革命。目目 录录第一节第一节 DNADNA的复制的复制(DNADNA指导下的指导下的DNADNA合成)合成)第二节第二节 DNADNA的损伤与修复的损伤与修复第三节第三节 DNADNA突变突变 第四节第四节 逆转录作用逆转录作用(RNARNA指导下的指导下的DNADNA的合成)的合
4、成)第五节第五节 DNADNA的遗传重组的遗传重组第一节 DNA的半保留复制一一、概念和概念和实验依据实验依据二二、DNA聚合反应有关的酶类聚合反应有关的酶类三、三、DNA的复制的起始点和方式的复制的起始点和方式四、四、原核细胞原核细胞DNA的复制过程的复制过程五、五、DNA复制的忠实性复制的忠实性六、六、真核细胞真核细胞DNA的复制的复制 DNA的半保留复制的的半保留复制的概念概念 DNA在复制时,两在复制时,两条链解开分别作为模板,条链解开分别作为模板,在在DNA聚合酶的催化下按聚合酶的催化下按碱基互补的原则合成两条碱基互补的原则合成两条与模板链互补的新链,以与模板链互补的新链,以组成新的
5、组成新的DNA分子。这样分子。这样新形成的两个新形成的两个DNA分子与分子与亲代亲代DNA分子的碱基顺序分子的碱基顺序完全一样。由于子代完全一样。由于子代DNA分子中一条链来自亲代,分子中一条链来自亲代,另一条链是新合成的,这另一条链是新合成的,这种复制方式称为半保留复种复制方式称为半保留复制制。DNA的半保留复制实验依据 19581958年年Meselson Meselson&stahl&stahl用同位素用同位素示踪标记加密度示踪标记加密度梯度离心技术梯度离心技术实实验验,证明了证明了DNADNA是是采取半保留的方采取半保留的方式进行复制式进行复制.15N DNA14N-15N DNA14
6、N DNA14N-15N DNA复制中的大肠杆菌染色体放射自显影图复制中的大肠杆菌染色体放射自显影图(Cairns实验实验)将将3H-胸苷标记大肠杆菌胸苷标记大肠杆菌DNA,经过,经过近两代近两代的时间,的时间,3H-胸苷掺入大肠杆胸苷掺入大肠杆菌菌DNA。用溶菌酶把细胞壁消化掉,使完整的大肠杆菌染色体。用溶菌酶把细胞壁消化掉,使完整的大肠杆菌染色体DNA释放出释放出来,放射自显影,得到上图。非复制部分(来,放射自显影,得到上图。非复制部分(C)银粒子密度较低,由一股放)银粒子密度较低,由一股放射性链和一股非放射性链构成。已复制部分站整个染色体的三分之二,其中射性链和一股非放射性链构成。已复制
7、部分站整个染色体的三分之二,其中一条双链(一条双链(B)仅有一股链是标记的,另外一股双链()仅有一股链是标记的,另外一股双链(A)的两股链都是)的两股链都是标记的,银粒子密度为前二者的两倍。染色体全长约为标记的,银粒子密度为前二者的两倍。染色体全长约为1100微米。微米。ABC环状环状DNA的复制的复制 ABC(1)DNA聚合酶聚合酶(DNA polymerase)(2 2)引物酶引物酶(primase)(primase)和引发体和引发体(primosome)(primosome):启动:启动RNARNA引物链引物链的合成的合成。(3(3)DNADNA连接酶连接酶(DNA ligaseDNA
8、ligase)(4 4)DNADNA解链酶解链酶(DNA helicase)(DNA helicase)(5(5)单链结合蛋白单链结合蛋白(single-(single-strand binding protein,strand binding protein,SSBSSB):结合在解开的结合在解开的DNADNA单链上,防止重单链上,防止重新形成双螺旋。新形成双螺旋。(6(6)拓扑异构酶拓扑异构酶(topoisomerase):(topoisomerase):兼具内切酶和兼具内切酶和连接酶活力,能迅速将连接酶活力,能迅速将DNADNA超螺旋超螺旋或双螺旋紧张状态变成松驰状态,或双螺旋紧张状态变
9、成松驰状态,便于解链。便于解链。解旋酶解旋酶DNA聚聚合酶合酶III解链酶解链酶RNA引物引物引物酶和引物酶和引发体引发体DNA聚聚合酶合酶ISSB335355RNA引物引物DNA聚合酶催化的链延长反应聚合酶催化的链延长反应5RNA引物引物子链33553355335模板链大肠杆菌三种大肠杆菌三种DNA聚合酶比较聚合酶比较DNA聚合酶聚合酶分子量分子量每个细胞的分子统计数每个细胞的分子统计数5-3 聚合酶作用聚合酶作用3-5 核酸核酸外切酶作用外切酶作用5-3 核酸核酸外切酶作用外切酶作用转化率转化率DNA聚合酶聚合酶109,000400+1120,000100+-0.05400,00010-2
10、0+-50比较项目比较项目DNA聚合酶聚合酶III切除引物切除引物修复修复修复修复复制复制功能功能 2019年发现聚合酶年发现聚合酶IV 和和V,它们涉及,它们涉及DNA的错误倾的错误倾向修复(向修复(errorprone repair)DNADNA聚合酶的聚合酶的3-5外切酶水解位点外切酶水解位点3355错配碱基错配碱基3-5核酸外切核酸外切酶水解位点酶水解位点DNA聚合酶聚合酶5-3外切酶活力外切酶活力5-3核酸外切核酸外切酶水解位点酶水解位点单链缺口单链缺口5大肠杆菌大肠杆菌DNA聚合酶聚合酶全酶的结构和功能全酶的结构和功能 延长因子延长因子DNADNA聚合酶聚合酶 两个两个 亚基夹住亚
11、基夹住DNADNADNADNA聚合酶聚合酶异二聚体异二聚体核心酶核心酶校对校对引物的结引物的结合和识别合和识别促使核心促使核心酶二聚化酶二聚化连连接接酶酶连连接接切切口口Mg2+连接酶连接酶ATP或或NADAMP+PPi或或NMN+AMPATCGPTTPPPA A CCTGAPACPPPPOHTGGATCGPTTPPPA A CCTGAPACPPPTGGP缺口33555533模板链模板链模板链模板链DNA的双向和单向复制的双向和单向复制环状环状 DNA复制时复制时所形成的所形成的Q结构结构起始点起始点复制叉的推进复制叉的推进复制叉复制叉起始点起始点起始点起始点起始点起始点复制叉复制叉复制叉复制
12、叉未复制未复制DNA单向复制单向复制双向复制双向复制大肠杆菌大肠杆菌复制起点成串排列的重复序列复制起点成串排列的重复序列GATCTNTTNTTT成串排列的成串排列的三个三个13bp序列序列共有序列共有序列共有序列共有序列TTATCCACA DnaA蛋白结合位点蛋白结合位点四个四个9bp序列序列DnaADnaB(解螺旋酶解螺旋酶)SSB大肠杆菌大肠杆菌DNA复制起点在起始阶段的结构模型复制起点在起始阶段的结构模型原核细胞DNA的半不连续复制复制过程复制叉的复制叉的移动方向移动方向解旋酶解旋酶DNA聚聚合酶合酶III解链酶解链酶RNA引物引物引物体引物体DNA聚聚合酶合酶ISSB335前导链前导链
13、随后链随后链35复制的复制的起始起始DNADNA链的链的延长延长DNADNA链链终止终止5RNA引物引物33聚合酶聚合酶III核心酶核心酶大肠杆菌复制大肠杆菌复制体结构示意图体结构示意图聚合酶聚合酶I聚合酶聚合酶III核心酶核心酶滞后链滞后链前导链前导链解螺旋酶解螺旋酶引物合成酶引物合成酶RNA引物引物引发体引发体拓扑异构酶拓扑异构酶II-夹子夹子-聚体聚体-夹子夹子 -复合物复合物RNA引物引物单链结合蛋白单链结合蛋白(SSB)大肠杆菌染色体大肠杆菌染色体复制的终止复制的终止oric复制叉复制叉2复制叉复制叉1终止复制叉终止复制叉2终止复制叉终止复制叉1复制叉复制叉1复制叉复制叉2完成复制完
14、成复制DNA拓扑异构酶拓扑异构酶连锁染色体连锁染色体复制叉处前导链和随后链同时合成的工作模型复制叉处前导链和随后链同时合成的工作模型聚合酶聚合酶III全酶全酶引物引物聚合酶聚合酶III全酶全酶引物引物引物体引物体引物体引物体解旋酶解旋酶解旋酶解旋酶 DNA复制过程是一个高度精确的过程,据估计,复制过程是一个高度精确的过程,据估计,大肠杆菌大肠杆菌DNA复制复制5 109碱基对仅出现一个误差,碱基对仅出现一个误差,保证复制忠实性的原因主要有以下三点保证复制忠实性的原因主要有以下三点:DNA聚合酶的高度专一性(严格遵循碱基聚合酶的高度专一性(严格遵循碱基配对原则,但错配率为配对原则,但错配率为7
15、10-6)DNA聚合酶的校对功能聚合酶的校对功能(错配碱基被(错配碱基被3-5 外切酶切除)外切酶切除)起始时以起始时以RNA作为引物作为引物DNA聚合酶的校对功能聚合酶的校对功能5 5-核酸核酸外切酶外切酶3 3-核酸核酸外切酶外切酶裂缝裂缝聚合中心聚合中心裂缝内部裂缝内部DNA聚合酶的校对功能聚合酶的校对功能聚合酶聚合酶错配硷基错配硷基复制方向复制方向正正 确确核苷酸核苷酸5 5 5 5 5 5 3 3 3 3 3 3 切除错配切除错配核苷酸核苷酸起始时以起始时以RNARNA作为引物的作用作为引物的作用 DNA复制为什么要合成一个复制为什么要合成一个RNA引物,而后又把这个引物,而后又把这
16、个引物消除呢?这是保证引物消除呢?这是保证DNA聚合过程高度精确的又一措施。聚合过程高度精确的又一措施。已知已知DNA 聚合酶具有聚合酶具有35 外切酶功能校对复制过程中的核外切酶功能校对复制过程中的核苷酸苷酸,也就是说聚合酶在开始形成一个新的磷酸二酯键前,也就是说聚合酶在开始形成一个新的磷酸二酯键前,总是检查前一个碱基是否正确,这就决定了它不能从头开总是检查前一个碱基是否正确,这就决定了它不能从头开始合成。因此先合成一条低忠实性的多核苷酸来开始始合成。因此先合成一条低忠实性的多核苷酸来开始DNA的合成,并以核糖核苷酸来表示是的合成,并以核糖核苷酸来表示是“暂时暂时”的,当的,当DNA开开始聚
17、合以后再以始聚合以后再以53 外切酶的功能切除,以高忠实性的脱外切酶的功能切除,以高忠实性的脱氧核苷酸取而代之,确保复制的忠实性。氧核苷酸取而代之,确保复制的忠实性。真核细胞真核细胞DNA复制的特点复制的特点 多个起点复制多个起点复制起起点点起起点点起起点点起起点点起起点点起起点点 真核生物的真核生物的DNADNA聚合酶聚合酶 端粒(端粒(telemeretelemere)复制)复制真核生物的真核生物的DNA聚合酶聚合酶DNA聚合酶聚合酶 分子量分子量亚基数亚基数细胞内分布细胞内分布酶活力百分比酶活力百分比外切酶活力外切酶活力DNA聚合酶聚合酶 110-23,000多个多个细胞核细胞核80%无
18、无120,000一个一个细胞核和线粒体细胞核和线粒体2 15%无无-400,000一个一个细胞核细胞核+10 25%5-3 外切酶外切酶DNA聚合酶聚合酶 DNA聚合酶聚合酶 45,000一个一个细胞核细胞核10 15%无无端粒酶(端粒酶(telomerase)DNA复制需要引物,但在线形复制需要引物,但在线形DNA分子末端不可能分子末端不可能通过正常的机制在引物被降解后合成相应的片段通过正常的机制在引物被降解后合成相应的片段.如果没如果没有特殊的机制合成末端序列,染色体就会在细胞传代中有特殊的机制合成末端序列,染色体就会在细胞传代中变得越来越短。这一难题是通过端粒酶的发现才得到了变得越来越短
19、。这一难题是通过端粒酶的发现才得到了澄清,端粒酶是一种含澄清,端粒酶是一种含RNA的蛋白复合物,实质上是一的蛋白复合物,实质上是一种逆转录酶,它能催化互补于种逆转录酶,它能催化互补于RNA模板的模板的DNA片段的合片段的合成,使复制以后的线形成,使复制以后的线形DNA分子的末端保持不变。分子的末端保持不变。初步研究表明,人体中生殖细胞的端初步研究表明,人体中生殖细胞的端粒长度保持不变,而体细胞的端粒长度粒长度保持不变,而体细胞的端粒长度则随个体的老化而逐步缩短。对此的一则随个体的老化而逐步缩短。对此的一个推论是:人的生殖细胞具端粒酶的活个推论是:人的生殖细胞具端粒酶的活力,体细胞则否。这一问题
20、的解决无疑力,体细胞则否。这一问题的解决无疑会有助于对生命衰老的认识会有助于对生命衰老的认识。53 AAAACCCCAAAACCCCCCA端粒酶端粒酶端粒合成的一种模型端粒合成的一种模型35TTTTGGGGTTTTG53 AAAACCCCAAAACCCCCCAAA35TTTTGGGGTTTTGGGGTTTTG53 AAAACCCCAAAACCCCCCAAATTGGGTGGGT35AATTTTG53 AAAACCCCAAAACCCCCCAGTTTTG 整合和整合和杂交杂交移位和移位和再杂交再杂交端粒合成的完成端粒合成的完成TTTTGGGG TTTTGGGG TTTTGGGGTTTT53nAA3T
21、TTTGGGG TTTTGGGG TTTTGGGGT53TTCCCCT nAA3TTTTGGGG TTTTGGGG TTTTGGGGT53TTAAAACCCC AAAACCCC AAAACCCCT n进一步加工进一步加工继续继续延伸延伸真核和原核真核和原核DNA细胞复制比较细胞复制比较第二节 某些物理化学因子,如紫外线、电离辐射和化学诱某些物理化学因子,如紫外线、电离辐射和化学诱变剂等,都有引起生物突变和致死的作用,其机理是作变剂等,都有引起生物突变和致死的作用,其机理是作用于用于DNA,造成,造成DNA结构和功能的破坏,称为结构和功能的破坏,称为DNA的损的损伤伤.DNA的修复主要有以下类型
22、的修复主要有以下类型:暗修复暗修复四、四、诱导修复诱导修复(SOS修复)修复)一、一、光裂合酶修复光裂合酶修复二二、切除修复切除修复三、三、重组修复重组修复 DNA紫外线损伤的光裂合酶修复紫外线损伤的光裂合酶修复1、形成嘧啶二聚体、形成嘧啶二聚体2、光复合酶结合于、光复合酶结合于损伤部位损伤部位3、酶被可见光激活、酶被可见光激活4、修复后酶被释放、修复后酶被释放DNA的损伤和切除修复的损伤和切除修复碱基丢失碱基丢失碱基缺陷或错配碱基缺陷或错配结构缺陷结构缺陷切开切开 核酸内切酶核酸内切酶核酸外切酶核酸外切酶切除切除DNA聚合酶聚合酶DNA连接连接酶酶AP核酸内切酶核酸内切酶核酸外切酶核酸外切酶
23、切开切开切除切除修复修复连接连接糖苷酶糖苷酶插入酶插入酶碱基碱基取代取代DNA的重组修复的重组修复胸腺嘧啶胸腺嘧啶二聚体二聚体复制复制核酸酶及核酸酶及重组蛋白重组蛋白修复复制修复复制DNA聚合酶聚合酶DNA连接酶连接酶重组重组SOS反应的机制反应的机制未诱导的细胞未诱导的细胞靶基因靶基因lexA基因被基因被LexA 蛋白质部分阻遏蛋白质部分阻遏recA基因被基因被LexA 蛋白质部分阻遏蛋白质部分阻遏(40个不同的位点被阻遏)个不同的位点被阻遏)LexA(阻遏物阻遏物)RecA(辅蛋白酶辅蛋白酶)靶基因表达靶基因表达lexA靶基因表达靶基因表达 但产物被分解但产物被分解recA大量表达大量表达
24、RecA促使促使分解分解LexA诱导的细胞诱导的细胞单链单链DNAATP DNA分子中的核苷酸序列发生突然而稳定的改变,从而导致分子中的核苷酸序列发生突然而稳定的改变,从而导致DNA的复制以及后来的转录和翻译产物随之发生变化,表现出异常的遗传的复制以及后来的转录和翻译产物随之发生变化,表现出异常的遗传特性,称为特性,称为DNA的突变。它包括由于的突变。它包括由于DNA损伤和错配得不到修复而引损伤和错配得不到修复而引起的突变,以及由于不同起的突变,以及由于不同DNA分子之间的交换而引起的遗传重组。分子之间的交换而引起的遗传重组。二、二、诱变剂的作用诱变剂的作用 碱基类似物碱基类似物(base a
25、nalog)碱基修饰剂碱基修饰剂(base modifier)嵌入染料嵌入染料(intercalation dye)紫外线紫外线(ultraviolet)和电离辐射和电离辐射(ionizing radiation)一、一、突变的类型突变的类型 碱基对的置换碱基对的置换(substitution)移码突变移码突变(framesshift mutation)-T-C-T-G-C-T-G-T-A-C-G-A-G-A-C-G-A-C-A-T-G-C-转换转换野生型基因野生型基因-T-C-G-A-C-T-G-T-A-C-G-A-G-C-T-G-A-C-A-T-G-C-T-C-T-T-C-T-G-T-A-
26、C-G-A-G-A-A-G-A-C-A-T-G-C-颠换颠换碱基对的置换碱基对的置换(substitution)移码突变移码突变(frames shift mutation)-T-C-T-C-G-C-T-G-T-A-C-G-A-G-A-G-C-G-A-C-A-T-G-C-插入插入-T-C-G-C-T-G-T-A-C-G-A-G-C-G-A-C-A-T-G-C-缺失缺失AT 一、概念一、概念二、逆转录酶二、逆转录酶三、病毒逆转录过程病毒逆转录过程四四、逆转录的生物学意义逆转录的生物学意义扩充了中心法则扩充了中心法则有助于对病毒致癌机制的了解有助于对病毒致癌机制的了解与真核细胞分裂和胚胎发育有关与
27、真核细胞分裂和胚胎发育有关逆转录酶是分子生物学重要工具酶逆转录酶是分子生物学重要工具酶三种功能三种功能依赖依赖DNA指导下的指导下的DNA聚合酶活力聚合酶活力依赖依赖RNA的的DNA聚合酶活力聚合酶活力核糖核酸酶核糖核酸酶H活力活力 以以RNARNA为模板合成为模板合成DNADNA,这,这与通常转录过程中遗传信息与通常转录过程中遗传信息从从DNADNA到到RNARNA的方向相反,故的方向相反,故称为逆转录作用。称为逆转录作用。逆转录过程中逆转录过程中cDNA的合成的合成依赖依赖RNA的的DNA聚合酶聚合酶核糖核酸核糖核酸酶酶H活力活力依赖依赖DNA的的DNA聚合酶聚合酶逆逆转录病毒的生活周期逆
28、转录病毒的生活周期生活周期RNA衣壳衣壳被膜被膜逆转逆转录酶录酶转录转录转译转译整合入宿主细胞染色体整合入宿主细胞染色体DNA进入细胞进入细胞丢失被膜丢失被膜丢失衣壳丢失衣壳逆转录逆转录RNARNAcDNA衣壳蛋衣壳蛋白白被膜蛋被膜蛋白白逆转录逆转录酶酶 DNA分子内或分子间发生遗传信息的重新组合,称为遗传重组分子内或分子间发生遗传信息的重新组合,称为遗传重组(genetic recombination),或者基因重排,或者基因重排(gene rearrangement)。重组。重组产物称为重组体产物称为重组体DNA(recombinant DNA)。重组的意义在于,它能迅速地增加群体的遗传多
29、样性;使有利重组的意义在于,它能迅速地增加群体的遗传多样性;使有利的突变与不利突变分开;通过优化组合积累有意义的遗传信息。此外的突变与不利突变分开;通过优化组合积累有意义的遗传信息。此外,重组还参与了许多重要的生物学过程,它为,重组还参与了许多重要的生物学过程,它为DNA损伤或复制障碍损伤或复制障碍提供修复机制。某些生物的基因表达受基因重组的调节,生物发育过提供修复机制。某些生物的基因表达受基因重组的调节,生物发育过程也受到基因加工的控制程也受到基因加工的控制。一、一、同源重组(同源重组(homologous recombination)二、二、特异位点重组(特异位点重组(site-specific recombination)三、三、转座重组(转座重组(transpositional recombination)
侵权处理QQ:3464097650--上传资料QQ:3464097650
【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。