ImageVerifierCode 换一换
格式:PPT , 页数:16 ,大小:367.12KB ,
文档编号:4371000      下载积分:19 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-4371000.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(晟晟文业)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(一元二次方程的根与系数的关系课件.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

一元二次方程的根与系数的关系课件.ppt

1、一元二次方程一元二次方程 ax2+bx+c=0(a0)的求根公式:的求根公式:x=aacbb242(b2-4ac 0)(1)x2-7x+12=0(2)x2+3x-4=0(3)2x2+3x-2=0解下列方程并完成填空:解下列方程并完成填空:方程两根两根和X1+x2两根积x1x2x1x2x2-7x+12=0 x2+3x-4=02x2+3x-2=0341271-3-4-4-1-22123一元二次方程的根与系数的关系:一元二次方程的根与系数的关系:如果方程ax2+bx+c=0(a0)的两个根是x1,x2 ,那么x1+x2=,x1x2=abac(韦达定理)(韦达定理)注:能用根与系数的关系的前提条件为注

2、:能用根与系数的关系的前提条件为b2-4ac0韦达(韦达(15401603)韦达是法国十六世纪最有影响的数学韦达是法国十六世纪最有影响的数学家之一。第一个引进系统的代数符号,家之一。第一个引进系统的代数符号,并对方程论做了改进。并对方程论做了改进。他生于法国的普瓦图。年青时学习他生于法国的普瓦图。年青时学习法律当过律师,后从事政治活动,当过法律当过律师,后从事政治活动,当过议会的议员,在对西班牙的战争中曾为议会的议员,在对西班牙的战争中曾为政府破译敌军的密码。韦达还致力于数政府破译敌军的密码。韦达还致力于数学研究,第一个有意识地和系统地使用学研究,第一个有意识地和系统地使用字母来表示已知数、未

3、知数及其乘幂,字母来表示已知数、未知数及其乘幂,带来了代数学理论研究的重大进步。韦带来了代数学理论研究的重大进步。韦达讨论了方程根的各种有理变换,发现达讨论了方程根的各种有理变换,发现了方程根与系数之间的关系(所以人们了方程根与系数之间的关系(所以人们把叙述一元二次方程根与系数关系的结把叙述一元二次方程根与系数关系的结论称为论称为“韦达定理韦达定理”)。)。韦达在欧洲被尊称为韦达在欧洲被尊称为“代数学之代数学之父父”。一元二次方程根与系数关系的证明:aacbbx2421aacbbx2422X1+x2=aacbb242aacbb242+=ab22=abX1x2=aacbb242aacbb242=

4、242)42(2)(aacbb=244aac=ac如果方程x2+px+q=0的两根是x1 ,x2,那么x1+x2=,x1x2=Pq例例1 1、不解方程,求方程两根的和与两根的积:、不解方程,求方程两根的和与两根的积:2310 xx 22410 xx 123xx 121xx 122xx解:解:我能行我能行1原方程可化为:原方程可化为:02122 xx2121 xx二次项不是二次项不是1 1,可,可以先把它化为以先把它化为1 11625x 35()275k k357答:方程的另一个根是答:方程的另一个根是,的值是的值是。2560 xkxk例例2 2、已知方程、已知方程求它的另一个根及求它的另一个根

5、及的一个根是的一个根是2 2的值。的值。26055kxx原方程可化为:原方程可化为:想一想,想一想,还有其他还有其他方法吗?方法吗?还可以把还可以把 代入方程的两边,求出代入方程的两边,求出2x k 解:解:,那么那么1x设方程的另一根是设方程的另一根是135x 3()255k 又 我能行我能行21232xx 1212xx 22310 xx 例例3 3、不解方程,求一元二次方程、不解方程,求一元二次方程两个根的平方和;倒数和。两个根的平方和;倒数和。12,x x设方程的两根是设方程的两根是,那么,那么解:解:我能行我能行32221212212)(xxxxxx2122122212)(xxxxxx

6、413)21(2)23(22221xx21212111xxxxxx)21()23(3所求的方程是所求的方程是:解:解:我能行我能行40)212()313()212313(2xx例例4 4、求运用根与系数的关系一个一元二次方程,、求运用根与系数的关系一个一元二次方程,使它的两个根是:使它的两个根是:313212,2525063xx即即:265500 xx或或:(1 1)下列方程两根的和与两根的积各是多少?)下列方程两根的和与两根的积各是多少?2310 xx 2322xx2230 xx231x;求它的另一个根及求它的另一个根及(2 2)已知方程)已知方程23190 xxmm的值。的值。的一个根是的

7、一个根是1 1,12,x x22430 xx12(1)(1)xx2112xxxx是方程是方程不解方程,求下列各式的值不解方程,求下列各式的值:(3 3)设)设的两个根的两个根,开启 智慧知识在于积累知识在于积累开启 智慧知识在于积累知识在于积累4,713,13(4 4)求一个一元二次方程,使它的两个根分别为:)求一个一元二次方程,使它的两个根分别为:;(5 5)已知两个数的和等于)已知两个数的和等于62,积等于,积等于求这两个数求这两个数根与系数关系小结1、已知方程的一个根求另一个根及未知数、已知方程的一个根求另一个根及未知数(也可以用根的定义求解)(也可以用根的定义求解)pxx21:有qxx

8、21对于一元二次方程对于一元二次方程 的两根的两根02qpxx21、xx2、求关于两根的代数式的值求关于两根的代数式的值如如:两根的平方和、两根的倒数和等两根的平方和、两根的倒数和等3、以、以x x1 1、x x2 2 为根的一元二次方程为根的一元二次方程 x x2 2-(x-(x1 1+x+x2 2)x+x)x+x1 1x x2 2=0=0,1、当、当k为何值时,方程为何值时,方程2x2-(k+1)x+k+3=0的两根差为的两根差为1。解:设方程两根分别为x1,x2(x1x2),则x1-x2=1(x2-x1)2=(x1+x2)2-4x1x2由根与系数的关系得x1+x2=,x1x2=21k23k12342)21(kk解得k1=9,k2=-3当k=9或-3时,由于0,k的值为9或-3。2、设、设x1,x2是方程是方程x2-2(k-1)x+k2=0的两个实数根,且的两个实数根,且x12+x22=4,求,求k的值。的值。解:由方程有两个实数根,得0242)1(4kk即-8k+4021 k由根与系数的关系得x1+x2=2(k-1),x1x2=k2 X12+x22=(x1+x2)2-2x1x2=4(k-1)2-2k2=2k2-8k+4由X12+x22=4,得2k2-8k+44解得k1=0 ,k2=4经检验,k2=4不合题意,舍去。k=0

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|