1、第七章第七章 相关与回归分析相关与回归分析本章教学目的本章教学目的:相关分析是研究变量之间相互关相关分析是研究变量之间相互关系的一种重要的统计方法,通过本章的学习,使系的一种重要的统计方法,通过本章的学习,使学生:了解相关分析的意义,相关的种类、回归学生:了解相关分析的意义,相关的种类、回归分析的概念,掌握相关系数的计算和简单线性回分析的概念,掌握相关系数的计算和简单线性回归分析。归分析。本章教学重点:本章教学重点:相关分析、回归分析相关分析、回归分析本章教学难点:本章教学难点:回归分析回归分析本章教学学时:本章教学学时:6学时学时1ppt课件第一节第一节 相关分析的意义和内容相关分析的意义和
2、内容 一、相关分析的涵义一、相关分析的涵义 (一)变量间依存关系(一)变量间依存关系 1.函数关系函数关系 存在严格的数量依存关系。存在严格的数量依存关系。2.相关关系相关关系 存在不确定性的依存关系。存在不确定性的依存关系。(二)相关分析(二)相关分析 研究两个或两个以上变量之间的相关方向和相研究两个或两个以上变量之间的相关方向和相关程度的统计分析方法。关程度的统计分析方法。2ppt课件二、相关关系的种类二、相关关系的种类(一)按变量之间相关的程度(一)按变量之间相关的程度 1 1、完全相关、完全相关 如销售额与销售量之间的关系(价格不变)如销售额与销售量之间的关系(价格不变)2 2、完全不
3、相关、完全不相关 注意:虚假相关。如天气与股票价格的关系注意:虚假相关。如天气与股票价格的关系 3 3、不完全相关、不完全相关 如居民的收入与支出水平如居民的收入与支出水平3ppt课件(二)按相关关系涉及变量的多少(二)按相关关系涉及变量的多少 1 1、单相关:一个变量对另一个变量的相关关、单相关:一个变量对另一个变量的相关关系。系。如只研究农物产量与施肥量间的关系。如只研究农物产量与施肥量间的关系。2 2、复相关:一个变量对两个或多个变量的相、复相关:一个变量对两个或多个变量的相关关系,称复相关。关关系,称复相关。如研究农物产量与施肥量、降雨量间的关如研究农物产量与施肥量、降雨量间的关系。系
4、。3 3、偏相关:一个变量与多个变量相关时,假、偏相关:一个变量与多个变量相关时,假定其他变量不变,只研究其中两个变量之间的定其他变量不变,只研究其中两个变量之间的相关关系,称偏相关。相关关系,称偏相关。4ppt课件(三)按变量之间相关关系的表现形态(三)按变量之间相关关系的表现形态 1 1、线性相关:两种变量之间大致呈线性关系。、线性相关:两种变量之间大致呈线性关系。2 2、非线性相关(或曲线相关):两种变量之、非线性相关(或曲线相关):两种变量之间不呈线性关系,近似某种曲线方程的关系。间不呈线性关系,近似某种曲线方程的关系。5ppt课件(四)对线性相关,按相关变量变化的方向(四)对线性相关
5、,按相关变量变化的方向 1 1、正相关、正相关 如工人工资与劳动生产率;人均消费水平与人如工人工资与劳动生产率;人均消费水平与人均收入水平等。均收入水平等。2 2、负相关、负相关 如商品流转额与流通费用。如商品流转额与流通费用。6ppt课件第二节第二节 线性相关的测定线性相关的测定一、相关表一、相关表(一)简单相关表(一)简单相关表机床机床1 12 23 34 45 56 67 78 89 910101111使用年限使用年限2 22 23 34 44 45 55 56 66 66 68 8年维修费年维修费用(元)用(元)4004005405405205206406407407406006008
6、008007007007607609009008408407ppt课件(二)单变量分组相关表(二)单变量分组相关表使用年限使用年限机床数机床数(台台)平均维修费用平均维修费用2 22 24704703 31 15205204 42 26906905 52 27007006 63 37877878 81 18408409 91 110801080合计合计1212-8ppt课件(三三)双变量分组相关表双变量分组相关表年维修费用年维修费用(元)(元)机床使用年限机床使用年限(年年)合合计计2 23 34 45 56 68 89 910001000110011000 00 00 00 00 00 01
7、 11 1900900100010000 00 00 00 01 10 00 01 18008009009000 00 00 01 10 01 10 02 27007008008000 00 01 10 02 20 00 03 36006007007000 00 01 11 10 00 00 02 25005006006001 11 10 00 00 00 00 02 24004005005001 10 00 00 00 00 00 01 1合计合计2 21 12 22 23 31 11 112129ppt课件二、相关图二、相关图使使用用年年限限10ppt课件三、相关系数三、相关系数(一)基本
8、公式(一)基本公式:最先由卡尔:最先由卡尔.皮尔逊提出衡量一元皮尔逊提出衡量一元线性相关的密切程度。线性相关的密切程度。22222221()()11()()()()xyxyxxyynrxxyynnnxyxynxxnyy 11ppt课件2(),()E xD xyabx令22(),()E yabD yb则:222()()()E xyE axbxab222(,)()()()()()Cov x yE xyE x E yababb2(,)()()Cov x ybrbD xD y12ppt课件(二)性质:(二)性质:(1 1)相关系数)相关系数r r的取值范围:的取值范围:-1r1-1r1(2)方向、类别
9、)方向、类别 r0 为正相关,为正相关,r 0 为负相关为负相关;r=0 表示不存在线性关系;表示不存在线性关系;|r|1 表示表示完全线性相关完全线性相关;(3)程度)程度 0|r|1表示存在表示存在不同程度线性相关不同程度线性相关:|r|0.3为不存在线性相关为不存在线性相关 0.3|r|0.5 为低度线性相关;为低度线性相关;0.5|r|0.8为显著线性相关;为显著线性相关;|r|0.8为高度为高度线性相关。线性相关。13ppt课件例:例:P254 某地区居民货币收入和社会商品零售额资料某地区居民货币收入和社会商品零售额资料如下,试计算其相关系数,并作相关判别?如下,试计算其相关系数,并
10、作相关判别?单位:亿元单位:亿元 年份年份12345678居民货币收入居民货币收入1213141514161820社会商品零售额社会商品零售额101212131314151714ppt课件2(1)122,1910 xxx存储:2(2)y106,1436yy存储:(3)1655xyxy 存储:222222(4)()()8 1655-122 106308=0.975315.899(8 1910-122)(8 1436-106)rnxyxyrnxxnyy 求:15ppt课件16ppt课件17ppt课件第三节第三节 回归分析回归分析一、回归分析的概念一、回归分析的概念 指在相关分析的基础上,根据相关关
11、系的数指在相关分析的基础上,根据相关关系的数量表达式(回归方程式)与给定的量表达式(回归方程式)与给定的自变量自变量x x,揭示,揭示因变量因变量y y在数量上的平均变化,并据以进行因变量在数量上的平均变化,并据以进行因变量的估计或预测的统计分析方法。的估计或预测的统计分析方法。二、二、相关分析与回归分析的关系相关分析与回归分析的关系相关分析中相关分析中x与与y对等,回归分析中对等,回归分析中x与与y要确定自变量和因变量(随机变量);要确定自变量和因变量(随机变量);18ppt课件 2 2、相关分析测定相关程度和方向,回归分析用、相关分析测定相关程度和方向,回归分析用回归模型进行预测和控制;回
12、归模型进行预测和控制;3 3、相关分析只有一个结果、相关分析只有一个结果 ;而在回归;而在回归分析中,自变量与因变量互换可以拟合两个独立分析中,自变量与因变量互换可以拟合两个独立的回归方程。的回归方程。1 1、相关分析是回归分析的基础和前提;、相关分析是回归分析的基础和前提;2 2、回归分析是相关分析的继续和深化。、回归分析是相关分析的继续和深化。xyyxrr19ppt课件三、简单线性回归三、简单线性回归按自变量的按自变量的 个数分个数分(简单回归)(简单回归)按回归曲线按回归曲线的形态分的形态分一一 元元线线性性回回归归20ppt课件2.一元线性回归模型一元线性回归模型()YE YX假定E(
13、)=0 则总体一元线性回归方程为:YX对于经判断具有线性关系的两个变量 与,构造一元线性回归模型为:YX式中:与 为模型参数,为随机误差项21ppt课件3.一元线性回归方程的几何意义一元线性回归方程的几何意义)(YEXXY一元线性回归方程的可能形态一元线性回归方程的可能形态 为正为正 为负为负 为为0截距截距斜率斜率22ppt课件 XYEY总体一元线性总体一元线性回归方程回归方程:样本一元线性回归方程:样本一元线性回归方程:bxay斜率(回归系数)斜率(回归系数)截距截距 截距截距a a 表示在没有自变量表示在没有自变量x x的影响时,其它各种的影响时,其它各种因素对因变量因素对因变量y y的
14、平均影响;回归系数的平均影响;回归系数b b 表明自变表明自变量量x x每变动一个单位,因变量每变动一个单位,因变量y y平均变动平均变动b b个单位。个单位。23ppt课件4.一元线性回归方程一元线性回归方程中参数中参数a、b的确定:的确定:bxay基本数学要求:基本数学要求:min)(02yyyy最小平方法最小平方法xbynxbnyaxxnyxxynb22)(24ppt课件例:例:某地区居民货币某地区居民货币收入和社会商品零收入和社会商品零售额资料如下,试售额资料如下,试拟合社会商品零售拟合社会商品零售额依居民货币收入额依居民货币收入变动的线性方程?变动的线性方程?(单位:亿元(单位:亿元
15、)年份年份收入收入x零售额零售额y112102131231412415135141361614718158201725ppt课件 当居民货币收入每增加当居民货币收入每增加1 1亿元时,社会商亿元时,社会商品零售额平均增加品零售额平均增加0.77780.7778亿元。亿元。2228 1655 122 1060.77788 1910 122nxyxybnxx 1061220.77781.388588aybx1.38850.7778yabxx26ppt课件27ppt课件5.5.回归系数回归系数b b与相关系数与相关系数r r的关系:的关系:四、一元线性回归方程检验四、一元线性回归方程检验(一)离差平
16、方和的分解(一)离差平方和的分解 1.1.总平方和总平方和(SST)(SST)2.2.回归平方和回归平方和(SSR)(SSR)反映由于反映由于x x 与与y y 之间的线性关系引起的之间的线性关系引起的y y的的取值变化,也称为可解释的平方和。取值变化,也称为可解释的平方和。3.3.残差平方和残差平方和(SSE)(SSE)反映除反映除x x以外的其他因素对以外的其他因素对y y 取值的影响,取值的影响,也称为不可解释的平方和或剩余平方和。也称为不可解释的平方和或剩余平方和。0,0rb0,0rb0,0rb28ppt课件yy yy yyyy2)yy(SST2)y y(SSE2)yy (SSR剩余平
17、方和剩余平方和回归平方和回归平方和总离差平方和总离差平方和29ppt课件(二)可决系数(二)可决系数(r r2 2)回归平方和占总离差平方和的比例。回归平方和占总离差平方和的比例。1.取值范围在取值范围在 0,1 之间;之间;r2 1,说明回归,说明回归方程拟合的越好;方程拟合的越好;r20,说明回归方程拟,说明回归方程拟合的越差;合的越差;2.判定系数等于相关系数的平方,即判定系数等于相关系数的平方,即r2(r)230ppt课件 实际分析中,只有相关系数实际分析中,只有相关系数 大到一定程大到一定程度时,才认为两变量的线性相关关系显著,回归度时,才认为两变量的线性相关关系显著,回归方程才有意
18、义,因此有必要进行相关系数检验。方程才有意义,因此有必要进行相关系数检验。r 检验步骤:检验步骤:据公式计算相关系数据公式计算相关系数r;根据给定的显著水平查相关系数表根据给定的显著水平查相关系数表(见见p316),得临界值得临界值 判别:若判别:若 表明表明x与与y线性关系显著,线性关系显著,检验通过;反之表明检验通过;反之表明x与与y线性相关关系不显著。线性相关关系不显著。r)2n(rr(2)nr31ppt课件(三)(三)估计标准误差估计标准误差 是因变量各实际值与其估计值之间的平均是因变量各实际值与其估计值之间的平均差异程度,表明其估计值对各实际值代表性的差异程度,表明其估计值对各实际值
19、代表性的强。其值越小,回归方程的代表性越强,用回强。其值越小,回归方程的代表性越强,用回归方程估计或预测的结果越准确。可从一方面归方程估计或预测的结果越准确。可从一方面反映回归模型拟合的优劣状况。反映回归模型拟合的优劣状况。22)(22nxybyaynyySe32ppt课件(四)回归方程的显著性检验(四)回归方程的显著性检验F F检验检验 (线性关系的检验(线性关系的检验 )检验自变量和因变量之间的线性关系是否检验自变量和因变量之间的线性关系是否显著。显著。具体方法是将回归离差平方和具体方法是将回归离差平方和(SSR)同剩余同剩余离差平方和离差平方和(SSE)加以比较,应用加以比较,应用F检验
20、来分析检验来分析二者之间的差别是否显著:二者之间的差别是否显著:如果是显著的,两个变量之间存在线性关如果是显著的,两个变量之间存在线性关系;系;如果不显著,两个变量之间不存在线性关如果不显著,两个变量之间不存在线性关系。系。33ppt课件1.提出假设提出假设H0:线性关系不显著:线性关系不显著.计算检验统计量计算检验统计量F3.确定显著性水平确定显著性水平,并根据分子自由度,并根据分子自由度1和分和分母自由度母自由度n-2找出临界值找出临界值F 4.作出决策:若作出决策:若F F ,拒绝拒绝H0;若若FF ,接受接受H0回归方程的显著性检验:回归方程的显著性检验:p311:表:表F分布临界值分
21、布临界值34ppt课件例题:例题:检验上面例题回归检验上面例题回归方程是否具有显著性?方程是否具有显著性?000H假设:,22()()229.943115.391.5556/6yyFyyn0.05,5.99115.395.99F0.05(1,8-2)查F分布表得临界值F,拒绝原假设。35ppt课件五、应用相关与回归分析注意的问题五、应用相关与回归分析注意的问题1.1.在定性分析的基础上进行定量分析;在定性分析的基础上进行定量分析;2.2.要注意现象质的界限及相关关系作用的范围;要注意现象质的界限及相关关系作用的范围;3.3.要将各种分析指标结合应用;要将各种分析指标结合应用;4.4.要尽可能使
22、用大样本。要尽可能使用大样本。36ppt课件本章作业教材P289练习737ppt课件本章练习一、填空1.1.回归系数表示回归系数表示 每增减一个单位时每增减一个单位时,平均增减的倍数。平均增减的倍数。2.2.是建立直线回归方程最有效的方法之一。是建立直线回归方程最有效的方法之一。3.3.一个回归方程只能作一种推算,即给出一个回归方程只能作一种推算,即给出 的数的数值,估计值,估计 的可能值。的可能值。4.4.,说明两变量,说明两变量 。5.A5.A与与B B变量之间的相关系数变量之间的相关系数r=-0.95r=-0.95,C C与与D D之间的之间的相关系数相关系数r=0.85,r=0.85,
23、则相关程度高的变量是则相关程度高的变量是 。38ppt课件二、选择二、选择1.1.下列哪两个变量之间的相关程度高(下列哪两个变量之间的相关程度高().商品销售额和商品销售量的相关系数是商品销售额和商品销售量的相关系数是0.90.9 .商品销售额和商业利润率的相关系数是商品销售额和商业利润率的相关系数是0.760.76 .流通费用率与商业利润率的相关系数是流通费用率与商业利润率的相关系数是-0.94-0.94 .商品销售价格与销售量的相关系数是商品销售价格与销售量的相关系数是-0.91-0.912.2.直线回归分析中(直线回归分析中().自变量是可控制量,因变量是随机的自变量是可控制量,因变量是
24、随机的 .两个变量不是对等的关系两个变量不是对等的关系 .利用一个回归方程,两个变量可以互相推算利用一个回归方程,两个变量可以互相推算 .根据回归系数可判定相关的方向根据回归系数可判定相关的方向39ppt课件3.3.工人的薪酬工人的薪酬(元元)依劳动生产率(千元)的回归依劳动生产率(千元)的回归方程为方程为6060100100A.A.如果劳动生产率等于如果劳动生产率等于10001000元,则工人薪酬为元,则工人薪酬为160160元;元;B.B.如果劳动生产率每增加如果劳动生产率每增加10001000元,则工人的薪酬元,则工人的薪酬平均提高平均提高100100元;元;C.C.如果劳动生产率每增加
25、如果劳动生产率每增加10001000元,则工人薪酬增元,则工人薪酬增加加160160元;元;D.D.如果工人薪酬为如果工人薪酬为260260元,则劳动生产率等于元,则劳动生产率等于20002000元;元;E.劳动生产率每下降劳动生产率每下降10001000元元,则工人薪酬平均减则工人薪酬平均减少少100100元。元。40ppt课件4.下列回归方程中,肯定错误的是(下列回归方程中,肯定错误的是()A.=10+2x r=0.52 A.=10+2x r=0.52 B.=500+0.1x r=0.75B.=500+0.1x r=0.75C.=-100+9x r=-0.86 C.=-100+9x r=-0.86 D.=-8+3.2x r=-0.93D.=-8+3.2x r=-0.93E.=140-1.8x r=0.85E.=140-1.8x r=0.8541ppt课件
侵权处理QQ:3464097650--上传资料QQ:3464097650
【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。