ImageVerifierCode 换一换
格式:PPT , 页数:21 ,大小:202.50KB ,
文档编号:4403058      下载积分:22 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-4403058.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(晟晟文业)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(1-2线性规划问题几何意义与解的性质定理-zff课件.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

1-2线性规划问题几何意义与解的性质定理-zff课件.ppt

1、122.12.1基本概念基本概念凸集凸集:设:设K是是n维欧式空间的一个点集维欧式空间的一个点集,若任意若任意 两点两点 X(1)K,X(2)K 的连线上一切点的连线上一切点 a a X(1)+(1-a a)X(2)K(0a1),则称则称K为凸集为凸集.3顶点顶点:设:设K是凸集是凸集,X K。若若X不能用不同的不能用不同的两点两点x(1)K,x(2)K 的线性组合表示,即的线性组合表示,即 Xa x(1)+(1-a)x(2)(0a1),则称则称X为为K的一个顶点的一个顶点(极极/角点角点).凸组合凸组合:设:设 X(1),X(2),X(k)是是n维欧式空间的维欧式空间的 k个点个点,若存在若

2、存在k个数个数u u1 1,u u2 2,u uk k满足满足0ui1,则称则称 X=u u1 1X(1)+u u2 2X(2)+u uk kX(k)为为 X(1),X(2),X(k)的凸组合。的凸组合。11kiiu42.2.四个重要定理四个重要定理 线性规划问题的可行解集线性规划问题的可行解集(可行域可行域)是凸集。是凸集。njjjjxbxPXD10,:从从D中任取两个不同的点中任取两个不同的点X(1)和和 X(2),二者应满足可行解定义中的二者应满足可行解定义中的等式条件等式条件;设设X是点是点X(1)和和X(2)连线上的任意连线上的任意一点,有一点,有X=X(1)+(1-)X(2),证明

3、证明XD。5:X(1)和和X(2)满足可行解定义中的满足可行解定义中的等式条件等式条件,则有;,则有;设设X是点是点X(1)和和X(2)连线上的任意一点,有连线上的任意一点,有X=X(1)+(1-)X(2),那么有,那么有;1)2(1)1(bxPbxPnjjjnjjj)2()1()1(jjjxaxax6bbaabxaPxaPxaPxaPxaxaPxPnjjjnjjjjjnjjjjnjjjnjjj)1()1()1()1(1)2(1)1()2(1)1()2(1)1(17 若若X是是LP问题的可行解,则问题的可行解,则X是基本可是基本可行解的充分必要条件是行解的充分必要条件是X的正分量所对应的系数的

4、正分量所对应的系数列向量线性独立列向量线性独立.8 9 (线性规划几何理论基本定理)线性规划几何理论基本定理)X是是LP问题的可行解(可行域中的一点),如果问题的可行解(可行域中的一点),如果它是基可行解,则它必然对应于可行域它是基可行解,则它必然对应于可行域D的顶点。的顶点。:10 X是基可行解是基可行解X是是D的一个顶点的一个顶点X不是不是基可行解基可行解X不是不是D的顶点的顶点11X不是不是基可行解基可行解X不是不是D的顶点的顶点0.2211mmPaPaPamjjjbxP112X不是基可行解不是基可行解X不是不是D的顶点的顶点bPuaxPuaxPuaxbPuaxPuaxPuaxmmmmm

5、m)(.)()()(.)()(2221112221110,.,0),(),.,(),(0,.,0),(),.,(),(2211)2(2211)1(mmmmuaxuaxuaxXuaxuaxuaxX13X不是基可行解不是基可行解X不是不是D的顶点的顶点)2()1(2121XXX必要性证毕必要性证毕14X不是不是D的顶点的顶点 X不是基可行解不是基可行解)2()2(2)2(1)2()1()1(2)1(1)1(,.,.,nnxxxXxxxX0)2()1(jjjxxx15X不是不是D的顶点的顶点 X不是基可行解不是基可行解mjjjbxP1)1(mjjjbxP1)2(mjjjjxxP1)2()1(0)(充

6、分性证毕充分性证毕16若若K是有界凸集,则此凸集上的任何是有界凸集,则此凸集上的任何一点一点X可表示为可表示为K的顶点的凸组合。的顶点的凸组合。根据凸组合的定义证明。根据凸组合的定义证明。17 若可行域若可行域有界有界,则线性规划问题的目标,则线性规划问题的目标函数函数一定一定可以在可行域的可以在可行域的顶点顶点上达到最优值。上达到最优值。1)首先首先,可行域有界就能够找到最优解可行域有界就能够找到最优解;在在非顶点非顶点X处取得最优值,则存在处取得最优值,则存在顶点顶点X(m)也取得相同的最优值。也取得相同的最优值。18kiiikiiiaaXaX11)(010且;kiiikiiiCXaXaCCX1)(1)(019kikimmimikiiiCXXaCCXaCXa11)()()(1)()()0(mCXCX20上述定理的一些有意义的启示:上述定理的一些有意义的启示:(为什么?能举例说明吗?为什么?能举例说明吗?)(类似于坐标与点的对(类似于坐标与点的对应关系!)应关系!)21顶点个数顶点个数基本可行解个数基本可行解个数基的个数基的个数mnC

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|