1、线段与角线段与角 线段与角是初中平面几何中两个非常基本的概念,这两个概念在日常生活中有着广泛的应用 小明做作业需要买一些文具在他家的左边 200 米处有一家文具店,他从家出发向文具店走去,走到一半发现忘了带钱,又回家取钱买了文具后回到家中问小明共走了多长的路程?在高层建筑中,一般都设有电梯,人们上楼一般都乘坐电梯,你想过吗,设计电梯与线段的什么性质有关?钟表是大家熟悉的计时工具,你可曾观察过在 2 点到 3 点之间什么时候时针与分针重合?什么时候时针与分针成90角?我们还可以在日常生活中提出许多与线段和角有关的问题,不少问题很有趣,也颇费脑筋,对于留心观察、勤于思考的人来说是锻炼脑筋的好机会
2、例例1、已知:AB BC CD=2 3 4,E,F 分别是AB 和CD 的中点,且EF=12厘米(cm),求AD 的长(如图 16)分析:分析:线段EF是线段AD的一部分,题设给出了EF的长度,只要知道线段EF占全线段AD的份额,就可求出AD 的长了 解:解:因为 AB BC CD=2 3 4,E是AB中点,F是CD中点,将线段AD九等分(9=2+3+4)且设每一份为一个单位,则AB=2,BC=3,CD=4,EB=1,CF=2从而EF=EB+BC+CF=1+3+2=6,即EF占AD全长的 ,所以线段AD的长 (厘米)212183=6293=例例 2、在直线l上取A,B两点,使AB=10厘米,再
3、在l上取一点C,使AC=2厘米,M,N分别是AB、AC中点求MN的长度(如图 17)分析:分析:因为是在直线上取C点,因此有两种情形:C点在A点的右侧或C点在A点的左侧 解:解:若C点在A点的右侧(即在线段AB上)因为 AC=2 厘米,N为AC中点,所以AN=1厘米;又AB=10厘米,M为AB中点,所以AM=5 厘米 则MN=AM-AN=5-1=4(厘米)(如图 17(a)若C点在A点的左侧(即在线段 BA 延长线上),此时MN=NA+AM=1+5=6(厘米)(如图 17(b)线段的最基本性质是“两点之间线段最短两点之间线段最短”,这在生活中有广泛应用前面所提到的高层建筑所设电梯的路线,就是连
4、接两层楼之间的线段,而楼梯的路线则是折线,电梯的路线最短 例例 3、如图18所示在一条河流的北侧,有A,B两处牧场每天清晨,羊群从A出发,到河边饮水后,折到B处放牧吃草请问,饮水处应设在河流的什么位置,从A到B羊群行走的路程最短?分析:分析:将河流看作直线l(如图19 所示)设羊群在河边的饮水点为C,则羊群行走路程为AC+CB设A关于直线l的对称点为A,由对称性知CA=CA 因此,羊群行走的路程为AC+CB 线段AC与 CB是连结点A与点B 之间的折线由线段的基本性质知,连结点 A与点B 之间的线中,线段AB最短设线段AB与直线l交于C那么,C点就是所选的最好的饮水地点,下面我们来说明这一点
5、解:解:作A关于直线l的对称点A连结B,A,并设线段BA与l交于C设C是l 上不同于C的另外一点,只要证明 AC+CBAC+CB 即可 利用线段基本性质及点关于直线的对称性知AC=CA及 CA=CA,所以 AC+CB=CA+CB,AC+CB=CA+CB=AB 而 CA与 CB是连结A,B的折线,而 AB 则是连结这两点之间的线段,所以 CA+CBAB=AC+CB=AC+CB,从而成立,即选择从而成立,即选择 C 点作为羊群的饮水点,羊群的行程最短点作为羊群的饮水点,羊群的行程最短 例例4、将长为10厘米的一条线段用任意方式分成5小段,以这5小段为边可以围成一个五边形问其中最长的一段的取值范围
6、分析:分析:设AB是所围成的五边形ABCDE的某一边(图110),而线段BC,CD,DE,EA则可看成是点 A,B之间的一条折线,因此,ABBC+CD+DE+EA 如果 AB 是最长的一段,上面的不等式关系仍然成立,从而可以求出它的取值范围 解:解:设最长的一段 AB 的长度为 x 厘米,则其余 4 段的和为(10-x)厘米由线段基本性质知 x10-x,所以 x5,即最长的一段 AB 的长度必须小于 5 厘米 例例 5、若一个角的余角与这个角的补角之比是 2 7,求这个角的邻补角 分析:分析:这个问题涉及到一个角的余角、补角及两个角的比的概念,概念清楚了,问题不难解决 解解:设这个角为,则这个
7、角的余角为90-,这个角的补角为180-依照题意得:(90-)(180-)=2 7 所以:360-2=630-7 5=270 =54 从而这个角的邻补角为:180-54=126 例6、若时钟由 2 点 30 分走到 2 点 50 分,问时针、分针各转过多大的角度?分析:分析:解这个问题的难处在于时针转过多大的角度,这就要弄清楚时针与分针转动速度的关系每一小时,分针转动360,而时针转动30,因此时针转动的速度是分针转动速度的112 解:解:在2点30分时,时钟的分针指向数字6;在2点50分时,时钟的分针指向数字10,因此,分针共转过“四格”,每转“一格”为 30,故分针共转过了430=120
8、由于时针转动的速度是分针转动速度的 ,从而,时针转动了 在钟表中,有很多有关分针、时针的转角问题解决这类问题的关键是把握住时针转动的速度是分针转动速度的(或分针转速是时针转速的12倍).11211201012按=112 例例 7、时钟里,时针从5点整的位置起,顺时针方向转多少度时,分钟与时针第一次重合(图 111)?分析:分析:在开始时,从顺时针方向看,时针在分针的“前方”,它们相差530=150,由于分针转动速度远远大于时针转动速度(是它的12倍),因此,总有一刻,分针“追上”时针(即两者重合)具体追上的时刻决定于开始时,分针与时针的角度差及它们的速度比 解:解:如分析分析,在开始时,分针“
9、落后”于时针150,设分针与时针第一次重合时,时针转动了角,那么,分针转动了(150+)因为分钟转速是时针的 12 倍,所以 150+=12,即时针顺时针方向转动 时,分针与时针重合。说明:说明:钟表里的分钟与时针的转动问题本质上与行程问题中的钟表里的分钟与时针的转动问题本质上与行程问题中的两人追击问题非常相似行程问题中的距离相当于这里的角度;两人追击问题非常相似行程问题中的距离相当于这里的角度;行程问题中的速度相当于这里时行程问题中的速度相当于这里时(分分)针的转动速度针的转动速度1507131111a鞍=71311 例 8、在4点与5点之间,时针与分针在何时(1)、成、成120(图112)
10、;(2)、成90(图112)分析与解分析与解 (1)在 4 点整时,时针与分针恰成 120,由于所问的时间是介于4点到5点之间,因此,这个时间不能计入从4点开始,分针与时针之间的角度先逐步减少,直至两针重合(夹角为0)之后,分针“超过”时针,两针之间的夹角又逐渐增大(此时,分针在时针的前面)直到两针夹角又一次成为 120,这个时间正是我们所要求的 设时针顺时针转过 a 角后,时针与分针(分针在时钟前)成 120,则:12a=120+a+120 所以,由于时针每转过 30(如从指向数字 4 转到指向数字 5)相当于 1 小时(60分钟),所以时针每转过1相当于经过2分钟,相当于经过了 分钟,因此
11、,在4点 分时,时针与分钟成120角。2409211111a鞍=9211197212431111=74311(2)如图 113(a),(b)所示 由于在整4点时,时针与分针夹角为120,因此,在4点与5点之间,时针与分针成 90,两种情况:(i)时针在分针之前(如图如图 113(a)设时针转了 a 角,分针转了12a角,有 120+=90+12,所以 用 时(分钟)(ii)时针在分针之后(如图如图 113(b),此时,有关系12-=120+90,即11=210 所以 用 时(分钟)综上所述,在4点到5点之间,在两个时间时,时针与分针成 90。说明:说明:由于时针与分针所成角依时针与分针的由于时针与分针所成角依时针与分针的“前前”“”“后后”次序次序有两种情况,因此,按两针夹角情况会出现一解或两解。有两种情况,因此,按两针夹角情况会出现一解或两解。3 01 1a=305251111=21011a=21022381111=
侵权处理QQ:3464097650--上传资料QQ:3464097650
【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。