ImageVerifierCode 换一换
格式:PPT , 页数:31 ,大小:1.09MB ,
文档编号:4463823      下载积分:25 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-4463823.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(晟晟文业)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(八数下12第2课时勾股定理的实际应用课件湘教版.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

八数下12第2课时勾股定理的实际应用课件湘教版.ppt

1、1.2 直角三角形的性质和判定()第1章 直角三角形导入新课讲授新课当堂练习课堂小结学练优八年级数学下(XJ)教学课件第2课时 勾股定理的实际应用学习目标1.会运用勾股定理求线段长及解决简单的实际问题.(重点)2.能从实际问题中抽象出直角三角形这一几何模型,利用勾股定理建立已知边与未知边长度之间的联 系,并进一步求出未知边长.(难点)情景引入数学来源于生活,勾股定理的应用在生活中无处不在,观看下面视频,你们能理解曾小贤和胡一菲的做法吗?导入新课导入新课问题 观看下面同一根长竹竿以三种不同的方式进门的情况,并结合曾小贤和胡一菲的做法,对于长竹竿进门之类的问题你有什么启发?这个跟我们学的勾股定理有

2、关,将实际问题转化为数学问题勾股定理的简单实际应用一讲授新课讲授新课例1 一个门框的尺寸如图所示,一块长3m,宽2.2m的长方形薄木板能否从门框内通过?为什么?2m1mABDC典例精析解:在RtABC中,根据勾股定理,AC2=AB2+BC2=12+22=5 52.24.AC 因为AC大于木板的宽2.2m,所以木板能从门框内通过.分析:可以看出木板横着,竖着都不能通过,只能斜着.门框AC的长度是斜着能通过的最大长度,只要AC的长大于木板的宽就能通过.ABDCO 解:在RtABO中,根据勾股定理得OB2=AB2-OA2=2.62-2.42=1,OB=1.在RtCOD中,根据勾股定理得OD2=CD2

3、-OC2=2.62-(2.4-0.5)2=3.15,3.151.77,OD1.7710.77.BDODOB 所以梯子的顶端沿墙下滑0.5m时,梯子底端并不是也外移0.5m,而是外移约0.77m.例2 如图,一架2.6m长的梯子AB斜靠在一竖直的墙AO上,这时AO为2.4m.如果梯子的顶端A沿墙下滑0.5m,那么梯子底端B也外移0.5m吗?例3:我国古代数学著作九章算术中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形,在水池的中央有一根新生的芦苇,它高出水面1尺,如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面,请问这个水池的深度和这根芦苇的长度各是多少

4、?D DA AB BC C解:设水池的水深AC为x尺,则这根芦苇长AD=AB=(x+1)尺,在直角三角形ABC中,BC=5尺由勾股定理得,BC2+AC2=AB2即 52+x2=(x+1)225+x2=x2+2x+1,2 x=24,x=12,x+1=13.答:水池的水深12尺,这根芦苇长13尺.例4 在一次台风的袭击中,小明家房前的一棵大树在离地面6米处断裂,树的顶部落在离树根底部8米处.你能告诉小明这棵树折断之前有多高吗?8 米6米 8 米米6米米ACB解:根据题意可以构建一直角三角形模型,如图.在RtABC中,AC=6米,BC=8米,由勾股定理得22226810.ABACBC米这棵树在折断之

5、前的高度是10+6=16(米).利用勾股定理解决实际问题的一般步骤:(1)读懂题意,分析已知、未知间的关系;(2)构造直角三角形;(3)利用勾股定理等列方程;(4)解决实际问题.归纳总结数学问题直角三角形勾股定理实际问题转化构建利用解决1.湖的两端有A、B两点,从与BA方向成直角的BC方向上的点C测得CA=130米,CB=120米,则AB为()ABCA.50米 B.120米 C.100米 D.130米130120?A练一练2.如图,学校教学楼前有一块长方形草坪,草坪长为4米,宽为3米,有极少数人为了避开拐角走“捷径”,在草坪内走出了一条“径路”,却踩伤了花草.(1)求这条“径路”的长;(2)他

6、们仅仅少走了几步(假设2步为1米)?解:(1)在Rt ABC中,根据勾股定理得这条“径路”的长为5米.(2)他们仅仅少走了 (3+4-5)2=4(步).别踩我,我怕疼!22345AB 米,A BCCBA问题 在A点的小狗,为了尽快吃到B点的香肠,它选择A B 路线,而不选择A C B路线,难道小狗也懂数学?AC+CB AB(两点之间线段最短)思考 在立体图形中,怎么寻找最短线路呢?利用勾股定理求最短距离二BAdABAABBAO想一想:蚂蚁走哪一条路线最近?A 蚂蚁AB的路线问题:在一个圆柱石凳上,若小明在吃东西时留下了一点食物在B处,恰好一只在A处的蚂蚁捕捉到这一信息,于是它想从A处爬向B处,

7、蚂蚁怎么走最近?BA根据两点之间线段最短易知第四个路线最近.若已知圆柱体高为12 cm,底面半径为3 cm,取3.BA3O12侧面展开图 123ABAA 解:在RtABA中,由勾股定理得2222123 315.ABAABA 立体图形中求两点间的最短距离,一般把立体图形展开成平面图形,连接两点,根据两点之间线段最短确定最短路线.归纳例5 有一个圆柱形油罐,要以A点环绕油罐建梯子,正好建在A点的正上方点B处,问梯子最短需多少米(已知油罐的底面半径是2 米,高AB是5 米,取3)?ABABAB解:油罐的展开图如右图,则AB为梯子的最短距离.AA=232=12,AB=5,AB=13.即梯子最短需13米

8、.数学思想:立体图形平面图形转化展开B牛奶盒牛奶盒A【变式题】看到小蚂蚁终于喝到饮料的兴奋劲儿,小明灵光乍现,拿出了牛奶盒,把小蚂蚁放在点A处,并在点B处放了点儿火腿肠粒,你能帮小蚂蚁找出吃到火腿肠粒的最短路程么?6cm8cm10cmBB18AB2610B3AB12=102+(6+8)2=296,AB22=82+(10+6)2=320,AB32=62+(10+8)2=360,解:由题意知有三种展开方法,如图.由勾股定理得AB1AB2AB3.小蚂蚁吃到火腿肠的最短路程为AB1,长为 cm.2 74例6 如图,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北7km处,他想把他的

9、马牵到小河边去饮水,然后回家他要完成这件事情所走的最短路程是多少?牧童A小屋BAC东北解:如图,作出点A关于河岸的对称点A,连接AB,则AB就是最短路程.由题意得AC=4+4+7=15(km),BC=8km.在RtACB中,由勾股定理得2215817.A B 求直线同侧的两点到直线上一点所连线段的和的最短路程的方法:先找到其中一点关于这条直线的对称点,连接对称点与另一点的线段就是最短路径长,以连接对称点与另一个点的线段为斜边,构造出直角三角形,再运用勾股定理求最短路程.归纳如图,是一个边长为1的正方体硬纸盒,现在A处有一只蚂蚁,想沿着正方体的外表面到达B处吃食物,求蚂蚁爬行的最短距离是多少.A

10、B解:由题意得AC=2,BC=1,在RtABC中,由勾股定理得 AB=AC+BC=2+1=5AB=,即最短路程为 .21ABC55练一练1.从电线杆上离地面5m的C处向地面拉一条长为7m的钢缆,则地面钢缆A到电线杆底部B的距离是()A.24m B.12m C.m D.m 742 6D当堂练习当堂练习2.如图,一支铅笔放在圆柱体笔筒中,笔筒的内部底面直径是9cm,内壁高12cm,则这只铅笔的长度可能是()A.9cm B.12cm C.15cm D.18cm D3.如图,有两棵树,一棵高8米,另一棵高2米,两棵对相距8米.一只鸟从一棵树的树梢飞到另一棵的树梢,问小鸟至少飞行多少?ABC解:如图,过

11、点A作ACBC于点C.由题意得AC=8米,BC=8-2=6(米),答:小鸟至少飞行10米.2210ABACBC米.4.如图,是一个三级台阶,它的每一级的长、宽和高分别等于55cm,10cm和6cm,A和B是这个台阶的两个相对的端点,A点上有一只蚂蚁,想到B点去吃可口的食物.这只蚂蚁从A点出发,沿着台阶面爬到B点,最短线路的长是多少?BAABC解:台阶的展开图如图,连接AB.在RtABC中,根据勾股定理得AB2=BC2AC25524825329,AB=73cm.5.为筹备迎新晚会,同学们设计了一个圆筒形灯罩,底色漆成白色,然后缠绕红色油纸,如图.已知圆筒的高为108cm,其横截面周长为36cm,如果在表面均匀缠绕油纸4圈,应裁剪多长的油纸?能力提升:解:如右下图,在RtABC中,因为AC36cm,BC108427(cm)由勾股定理,得AB2AC2BC23622722025452,所以AB45cm,所以整个油纸的长为454180(cm)课堂小结课堂小结勾股定理的应用用勾股定理解决 实 际 问 题用勾股定理解决点的距离及路径最短问题见学练优本课时练习课后作业课后作业

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|