1、学学 习习 与与 应应 用用 讲讲 评评张树仁 哈尔滨工业大学二零零四年 新颁布的公路钢筋混凝土及预应力混凝土桥梁设计规范(JTG D62-2004)(以下简称桥规 JTG D62)在总则中增加了耐久性设计内容,提出了公路桥涵结构应根据所处的环境条件进行耐久性设计的概念。2004年5月出版的中国土木工程学会标准混凝土结构耐久性设计与施工指南(CCES01-2004)(以下简称耐久性设计与施工指南CCES01)进一步提出了混凝土结构及其构件的耐久性应根据不同的设计年限及相应的极限状态和不同的环境类别及其作用等级进行设计的概念,明确提出了环境作用下混凝土结构耐久性设计与施工的基本原则与要求。长期以
2、来,人们受混凝土是一种耐久性能良好的建筑料这一认识的影响,忽视了钢筋混凝土结构耐久性问题,造成了钢筋混凝土结构耐久性研究的相对滞后,并为此付出了巨大的代价。国内外大量调查分析发现,引起混凝土结构耐久性失效的原因存在于结构设计、施工及维修的各个环节。虽然在许多国家的设计规范中都明确规定钢筋混凝土结构的耐久性要求,但是,这一宗旨并没有充分地体在具体设计条文中,致使在以往的乃至现在的工程设计中普遍存在重视强度设计而轻视耐久性设计的现象。我国1989年颁布的混凝土结构设计规范和1985年颁布的公路钢筋混凝土及预应力混凝土桥涵设计规范涉及结构耐久性的内容很少,除了一些保证结构耐久性的构造措施的一般规定之
3、外,只对影响混凝土耐久性的裂缝宽度加以控制。实践证明,裂缝控制对结构耐久性设计并不起决定性作用。新颁布的桥规 JTG D62增加了耐久性设计内容,特别是耐久性设计与施工指南CCES01提出的混凝土结构应根据不同设计年限及相应的极限状态和不同的环境进行类别及其作用等级进行耐久性设计的概念。明确提出了环境作用下混凝土结构的耐久性设计与施工的基本原则与要求,是结构设计理念上的重大突破,是工程结构科学的重大技术进步,对提高设计质量具有指导意义。混凝土结构的耐久性是指结构对气候作用、化学侵蚀、物理作用或任何其他破坏过程的抵抗能力。由于混凝土的缺陷(例如裂隙、孔道、汽泡、孔穴等),环境中的水及侵蚀性介质就
4、可能渗入混凝土内部,产生碳化,冻融,锈蚀作用而影响结构的受力性能。并且结构在使用年限内还会受到各种机械物理损伤(腐损,撞击等)及冲刷、溶蚀、生物侵蚀的作用。混凝土结构的耐久性问题表现为:混凝土损伤(裂缝、破碎、酥裂、磨损、溶蚀等);钢筋的锈蚀,脆化、疲劳、应力腐蚀;以及钢筋与混凝土之间粘结锚固作用的削弱等三个方面。从短期效果而言,这些问题影响结构的外观和使用功能;从长远看,则会降低结构安全度,成为发生事故的隐患,影响结构的使用寿命。一、混凝土结构的耐久性影响混凝土结构耐久性的因素十分复杂,主要取决于以下四个方面:(1)混凝土材料的自身特性;(2)混凝土结构的设计与施工质量;(3)混凝土结构所处
5、的环境条件;(4)混凝土结构的使用条件和防护措施。混凝土材料的自身特性和结构的设计与施工质量是决定其耐久性的内因。混凝土的材料组成,如水灰比、水泥品种和数量,骨料的种类与级配都直接影响混凝土结构的耐久性。混凝土的缺陷(例如裂缝,气泡,空穴等)都会造成水分和侵蚀性物质渗入混凝土内部,与混凝土发生物理化学作用,影响混凝土结构的耐久性。混凝土结构所处的环境条件和防护措施,是影响混凝土结构耐久性的外因。外界环境因素对混凝土结构的破坏是环境因素是对混凝土结构物理化学作用的结果。环境因素引起的混凝土结构损伤或破坏主要有:(1)混凝土的碳化混凝土的碳化是指混凝土中氢氧化钙与渗透进混凝土中的二氧化碳和其它酸性
6、气体发生化学反应的过程。一般情况下混凝土呈碱性,在钢筋表面形成碱性薄膜,保护钢筋免遭酸性介质的侵蚀,起到了“钝化”保护作用。碳化的实质是混凝土的中性化,使混凝土的碱性降低,钝化膜破坏,在水分和其它有害介质侵入的情况下,钢筋就会发生锈蚀。(2)氯离子的侵蚀氯离子对混凝土的侵蚀是氯离子从外界环境侵入已硬化的混凝土造成的。海水是氯离子的主要来源,北方寒冷的冬季向道路、桥面洒盐化雪除冰都有可能使氯离子渗入混凝土中。氯离子对混凝土的侵蚀属于化学侵蚀,对结构的危害是多方面的,但最终表现为钢筋的锈蚀。(3)碱骨料反应 碱骨料反应一般指水泥的碱和骨料中的活性硅发生反应,生成碱硅酸盐凝胶,并吸水产生膨胀压力,造
7、成混凝土开裂。碱骨料反应引起的混凝土结构破坏程度,比其他耐久性破坏发展更快,后果更为严重。碱骨料反应一旦发生,很难加以控制,一般不到两年就会使结构出现明显开裂,所以有时也称碱骨料反应是混凝土结构的“癌症”。(4)冻融循环破坏渗入混凝土中的水在低温下结冰膨胀,从内部破坏混凝土的微观结构。经多次冻融循环后,损伤积累将使混凝土剥落酥裂,强度降低。(5)钢筋锈蚀钢筋腐蚀是影响钢筋混凝土结构耐久性和使用寿命的重要因素。混凝土中钢筋腐蚀的首要条件是混凝土的碳化和脱钝,只有将覆盖钢筋表面的碱性钝化膜破坏,加之有水分和氧的侵入,才有可能引起钢筋的腐蚀。钢筋腐蚀伴有体积膨胀,使混凝土出现沿钢筋的纵向裂缝,造成钢
8、筋与混凝土之间的粘结力破坏,钢筋截面面积减少,使结构构件的承载力降低,变形和裂缝增大等一系列不良后果,并随着时间的推移,腐蚀会逐渐恶化,最终可能导致结构的完全破坏。值得注意的是,几乎所有侵蚀混凝土和钢筋的作用都需要有水作介质。另一方面,几乎所有的侵蚀作用对混凝土结构的破坏都与侵蚀作用引起的混凝土膨胀,并都与最终的混凝土开裂有关。而且当混凝土结构开裂后,腐蚀速度将大大加快。混凝土结构的耐久性将进一步恶化。在影响混凝土结构耐久性的诸多因素中,钢筋锈蚀危害最大,钢筋锈蚀与混凝土碳化有关,混凝土保护层碳化是钢筋锈蚀的前提,水分、氧气的存在是引起钢筋锈蚀的必要条件。因此,提高混凝土结构耐久性的根本途径是
9、增强混凝土密实度,防止或控制混凝土开裂,阻止水分的侵入;加大混凝土保护层的厚度,防止由于混凝土保护层碳化引起钢筋钝化膜的破坏。二、混凝土结构耐久性设计原则混凝土桥梁结构的耐久性取决于混凝土材料的自身特性和结构的使用环境,与结构设计、施工及养护管理密切相关。综合国内外研究成果和工程经验,一般是从以下三个方面解决混凝土桥梁结构的耐久性:(1)采用高耐久性混凝土,增强混凝土的密实度,提高混凝土自身抗破损能力;(2)加强桥面排水和防水层设计,改善桥梁的环境作用条件;(3)改进桥梁结构设计,其中包括加大混凝土保护层厚度;加强构造钢筋,防止控制裂缝发展;采用具有防腐保护的钢筋(例如:体外预应力筋,无粘结预
10、应力筋,环氧涂层钢筋等)。1.结构混凝土耐久性的基本要求 提高混凝土自身的耐久性是解决混凝土结构耐久性的前提和基础。混凝土的耐久性主要取决于混凝土的材料组成,其中水灰比,水泥用量,强度等级均对耐久性有较大影响。新颁布的桥规JTG D62在总则中增加耐久性设计内容,明确规定了不同使用环境下,结构混凝土的基本要求,对影响混凝土耐久性的最大水灰比、最小水泥用量、最低强度等级、最大氯离子含量和碱含量做出了限制规定。桥规JTG D62规定,公路桥涵应根据所处环境进行耐久性设计。结构混凝耐久性的基本要求应符表2-1的要求:表表2-12-1 结构混凝土耐久性的基本要求环境类别环境条件最大水灰比最小水泥用量(
11、kg/m3)最低混凝土强度等级最大氯离子含量(%)最大碱含量(kg/m3)温暖或寒冷地区的大气环境;与无侵蚀性的水或土接触的环境0.55275C250.303.0严寒地区的大气环境;使用除冰盐环境;滨海环境0.50300C300.153.0海水环境0.45300C350.103.0受侵蚀性物质影响的环境0.40325C350.103.0注:1、有关规范对海水环境结构混凝土中最大水灰比和最小水泥用量有关详细规定时,可参照执行;2、表中氯离子含量系指其与水泥用量的百分率;3、当有实际工程经验时,处于类环境中结构混凝土的最低强度等级可比表中降低一个等级;4、预应力混凝土构件混凝土中的最大氯离子含量为
12、0.06%,最小水泥用量为350kg/m3,最低混凝土强度等级为C40,或按表中规定类环境提高三个等级,其他环境类别提高二个等级。5、特大桥和大桥混凝土中的最大碱含量为1.8kg/m3,当处于、类或使用除冰盐和滨海环境时,宜使用非碱活性骨件。规定,对水位变动区有抗冻要求的结构混凝土,其抗冻等级不应低于表2-2的规定。注:1、混凝土抗冻性试验方法应符合现行标准JTJ053的规定。2、墩、台混凝土应选比表列值高一级的抗冻等级。耐久性设计与施工指南CCES01按结构设计使用年限、级别和环境作用等级对配筋混凝土的最低强度等级;最大水灰比和单方混凝土胶凝材料的最低用量作出了限值规定(见表3)。桥梁所在地
13、区海水环境淡水环境严重受冻地区(最冷月月平均气温低于8)F350F250受冻地区(最冷月月平均气温在48之间)F300F200微冻地区(最冷月月平均气温在04之间)F250F150表2-2 水位变动区混凝土抗冻等级选用标准 表表3 3 砼最低强度等级、最大水胶比和胶凝材料最小用量砼最低强度等级、最大水胶比和胶凝材料最小用量(kg/mkg/m3 3)环境等级级别 设计使用年限一级100年二级50年三级30年侵蚀程度A可忽略C30,0.55,280C25,0.60,260C25,0.65,240B轻度C35,0.50,300C30,0.55,280C30,0.60,260C中度C40,0.45,3
14、20C35,0.50,300C35,0.50,300D严重C40,0.40,340C40,0.45,320C40,0.45,320E非常严重C45,0.36,360C40,0.40,340C40,0.40,340F极端严重C45,0.32,380C40,0.36,360C40,0.35,360注:1、水胶比:混凝土配制时的用水量与胶凝材料(水泥加矿物掺和料)总量之比。在耐久混凝土的配合比中,常以胶凝材料用量的概念取代传统的水泥用量,并以水胶比取代传统的水灰比作为判断混凝土密实性或耐久性的一个宏观指标。2、桥梁结构处于露天环境,非寒冷地区环境作用等级一般取B级,寒冷及严寒地区一般取D级或C级,除
15、冰盐、冻融环境一般取D级或E级,近海或海洋环境一般取D或F级。应该指出,表2或表3中给出的影响结构混凝土耐久性的各项限值规定中,控制混凝土的最大水灰比(或水胶比)和最小水泥(或胶凝材料)用量是十分重要的。水灰比(或水胶比)和水泥(或胶凝材料)用量不仅影响混凝土的强度,而且是影响混凝土耐久性的主要因素。为了防止钢筋腐蚀以及提高混凝土的抗冻性,混凝土应尽可能地密实,使其具有良好的抗渗透性能。为此,除了选择级配良好的集料和精心施工保证混凝土充分捣实和水泥充分水化外,水灰比是影响混凝土密实性的最重要的条件。为了保证混凝土有足够的耐久性,控制最低水泥用量也很重要的,因为单位水泥用量较高的混凝土,混凝土拌
16、合物比较均匀,可减少混凝土捣实中出现的局部缺陷。混凝土抗冻融的能力与其含气量有密切关系,因此,有抗冻要求的结构混凝土应掺入适量的引气剂。2加大钢筋的混凝土保护层厚度 混凝土碳化是钢筋锈蚀的前提。就一般情况而言,只有保护层混凝土碳化,钢筋表层钝化膜破坏,钢筋才有可能锈蚀。因此,加大钢筋的混凝土保护层厚度,是保护钢筋免于锈蚀,提高混凝土结构耐久性的最重要的措施之一。桥规JTG D62给出的钢筋最小混凝土保护层厚度列于表4。序号构 件 类 型环境条件、1基础、桩基承台(1)基坑底面有垫层或侧面有模板(受力钢筋)(2)基坑底面无垫层或侧面无模板4060507560852墩台身、挡土结构、涵洞、梁、板、
17、拱圈、拱上建筑(受力主筋)3040453人行道构件、栏杆(受力主筋)2025304箍筋2025305缘石、中央分隔带、护拦等行车道构件3040456收缩、温度、分布、防裂等表层钢筋152025表4 普通钢筋和预应力直线钢筋最小混凝土保护层厚度(mm)注:1.对于环氧树脂涂层钢筋,可按环境类别取用;2.保护层厚度大于50mm时,亦在保护层内设置钢筋网。耐久性设计与施工CCES01规定,钢筋的混凝土保护层厚度C一般应不小于表给出的最小保护层厚度与保护层厚度施工负允差之和,即CCmin+,式中的施工负允差对现浇混凝土构件可取510mm,对工厂生产的预制构件可取05mm,视钢筋施工定位工艺和质量保证的
18、可靠程度而定,必要时可取更高的数值环境作用等级ABCDEF板、墙等面形构件使用年限30年151525354550使用年限50年152030405055使用年限100年203040455560梁、柱等条件构件使用年限30年202530405055使用年限50年253035455560使用年限100年303545506065 3加强构造配筋,防止和控制混凝土裂缝 混凝土结构的任何损伤与破坏,一般都是首先在混凝土中出现裂缝,裂缝是反映混凝土结构病害的晴雨表。反过来,裂缝的存在会增加混凝土渗透性,提拱了使侵蚀破坏作用逐步升级,混凝土耐久性不断下降的渠道。当混凝土开裂后,侵蚀速度将加大加快,形成导致混凝
19、土结构耐久性的进一步退化的恶性循环。因此,防止和控制混凝土的裂缝,对提高混凝土结构的耐久性是十分重要的。控制混凝土的裂缝,除按规范要求,控制正常使用极限状态的工作裂缝以外,更重要的是要采取构造措施,控制混凝土施工及使用过程大量出现的非工作裂缝。桥规JTG D62突出强调了加强水平防缩钢筋和箍筋在控制裂缝中的作用,提高了水平防收缩钢筋的配筋率和箍筋间距的限制。桥规JTG D62规定,T形、I形截面梁或箱形截面梁的腹板两侧,应设置直径68mm的纵向钢筋(一般称水平防收缩钢筋),每腹板内钢筋截面面积宜为(0.0010.002)bh,其中b为腹板宽度,h为梁的高度,其间距在受拉区不大于腹板宽度,且不大
20、于200mm,在受压区不应大于300mm。在支点附近剪力较大区段和预应力混凝土梁的锚固区段,腹板两侧纵向钢筋截面面积应予增加,纵向钢筋的间距宜为100150mm。桥规JTG D62规定,箍筋宜采用直径不小于8mm的变形钢筋,且不小于1/4主筋直径的箍筋。其间距应符合下列规定:箍筋间距不应大于梁高的1/2,且不大于400mm;当所箍钢筋为按受力需要的纵向受压钢筋时,不应大于所箍钢筋直径的15倍,且不应大于400mm。在钢筋绑扎搭接接头范围内的箍筋间距,当绑扎搭接钢筋受拉时,不应大于主钢筋直径的5倍,且不大于100mm;当搭接钢筋受压时,不应大于主钢筋直径的10倍,且不大于200mm。在支座中心向
21、跨径方向长度相当于不小于一倍梁高范围内,箍筋间距不宜大于100mm。桥规JTG D62规定,预应力混凝土T形梁,I形截面梁和箱形截面梁腹板内应分别设置直径不小于10mm和12mm的箍筋,且应采用带肋钢筋,间距不应大于250mm;自支座中心起长度不小于一倍梁高的范围内,应采用闭合式箍筋,间距不应大于140mm。在T形、I形截面梁的下部的马蹄内,应另设直径不小于8mm的闭合式箍筋,间距不应大于200mm。桥规JTG D62规定上述的上述指标,都比老桥规有所提高。腹板内由水平防收缩钢筋和箍筋构成的钢筋网,是防止和控制收缩裂缝的重要构造措施。4提高后张法预应力钢筋管道压浆质量的措施 后张法预应力钢筋管
22、道压浆质量是影响预应力混凝土梁耐久性的关键之一。桥规JTG D62规定,预应力钢筋管道压浆所用水泥浆的抗压强度不应低于30MPa,其水灰比为0.4-0.5,为减少收缩,可通过试验掺入适量膨胀剂。耐久性设计与施工CCES01认为,预应力筋的锈蚀会导致结构的突然破坏,事先不易发现,在耐久性设计中必须特别重视,并宜采用多重的防护手段。对于可能遭受氯盐侵蚀的预应力混凝土结构,预应力筋、锚具、连接器等钢材组件宜采用环氧涂层或涂锌,后张预应力体系的管道必须具有密封性能,不应使用金属的螺旋管,宜采用有良好密封性能的高密度塑料波形管,管道灌浆材料和灌浆方法要事先通过试验验证,尽可能降低浆体硬化后形成的气孔,并采用真空灌。必要时还可以在灌浆材料中掺入适量的阻锈剂。5加强桥面铺装层的防水设计 桥面铺装防水层对桥面的防护有重要作用,必须精心设计与施工。桥面铺装层应采用密实性较好的C30以上等级的混凝土,混凝土铺装层内应设置钢筋网,防止混凝土开裂。采用复合纤维混凝土和在混凝土中掺入水泥基渗透结晶材料(赛柏斯),都能收到较好的防水效果。桥面铺装层顶面应设置防水层,特别是连续梁(或悬臂梁)的负弯矩段更应十分重视防水层设计。加强洩水管设计,应特别注意洩水管周边的构造细节处理。加强伸缩缝处的排水设计,防止水分从伸缩缝处渗入梁内。解决混凝土结构耐久性问题还涉及施工及养护管理等方面的问题,应参照有关规范执行。
侵权处理QQ:3464097650--上传资料QQ:3464097650
【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。