1、第五章第五章 数控装置的轨迹控制原理数控装置的轨迹控制原理第一节第一节 概述概述第二节第二节 脉冲增量插补脉冲增量插补第三节第三节 数据采样插补数据采样插补第四节第四节 数控装置的进给速度控制数控装置的进给速度控制插补方法比较插补方法比较 思考与练习思考与练习第五章第五章 数控装置的轨迹控制原理数控装置的轨迹控制原理第一节第一节 概述概述轨迹控制过程:轨迹控制过程:加工各种形状的零件轮廓时,必须控制刀具加工各种形状的零件轮廓时,必须控制刀具相对工件以给定的速度沿指定的路径运动,即控制各坐标相对工件以给定的速度沿指定的路径运动,即控制各坐标轴依某一规律协调运动的过程。轴依某一规律协调运动的过程。
2、也叫插补过程也叫插补过程。插补:插补:在数控加工中,一般已知运动轨迹的起点坐标、终点坐标和曲线方程,如何使切削加工运动沿着预定轨迹移动呢?数控系统根据这些信息实时地计算出各个中间点的坐数控系统根据这些信息实时地计算出各个中间点的坐标,通常把这个过程称为标,通常把这个过程称为“插补插补”。插补实质插补实质上是根据有限的信息完成上是根据有限的信息完成“数据点的密化数据点的密化”。平面曲线的运动轨迹需要两个运动来协调;空间曲线或平面曲线的运动轨迹需要两个运动来协调;空间曲线或立体曲面则要求三个以上的坐标产生协调运动。立体曲面则要求三个以上的坐标产生协调运动。第五章第五章 数控装置的轨迹控制原理数控装
3、置的轨迹控制原理 插补是插补是CNCCNC装置的装置的核心核心。插补的速度和精度直接影响插补的速度和精度直接影响CNC装置的控制速度和精度。装置的控制速度和精度。提高插补速度和精度的措施:提高插补速度和精度的措施:(1)(1)多微处理器多微处理器(2)(2)插补算法力求简单,高效。插补算法力求简单,高效。(3)(3)软硬件结合。软硬件结合。第一节第一节 概述概述普遍应用的两类插补方法:普遍应用的两类插补方法:脉冲增量插补和数据采样插补脉冲增量插补和数据采样插补(一)脉冲增量插补(一)脉冲增量插补/基准脉冲插补 基本原理:基本原理:这类插补算法是以脉冲形式输出。每插补运算一次产生一个进给脉冲,然
4、后输出到伺服系统,驱动工作台运动。每发出一个脉冲,工作台移动一个基本长度单位。(即脉冲当量,脉冲当量是脉冲分配的基本单位)应用:应用:控制精度和进给速度较低,主要用于以步进电动机驱动的开环控制系统中。(二)数据采样插补(二)数据采样插补/时间标量插补/数字增量插补 基本原理:基本原理:这类算法插补结果输出的是标准二进制数。一般分为粗、精插补两步完成。粗插补粗插补:根据插补周期T和程编进给速度F,把轮廓曲线分割为一系列微小直线段L=FT。精插补精插补:然后将这些微小直线段再做“数据点的密化”,即做直线的脉冲增量插补。应用应用:多用于直线和交流伺服电机驱动的闭环、半闭环数控系统中。第一节第一节 概
5、述概述 脉冲增量插补包括:脉冲增量插补包括:逐点比较法(代数运算法或醉步法)原理:原理:数控装置在控制刀具移动过程中,不断比较刀具与给定轮廓的误差,由误差值决定刀具下一步运动方向,使刀具向误差减小的方向移动,且只有一个方向移动。特点:特点:运算直观、插补误差小于一个运算直观、插补误差小于一个,(进给脉冲跟随插补频进给脉冲跟随插补频率率),输出脉冲均匀且速度变化小,调节方便。,输出脉冲均匀且速度变化小,调节方便。应用:应用:适于适于两坐标联动两坐标联动的机床。的机床。数字积分法(数字微分分析法DDA)原理:原理:特点:特点:运算速度快,脉冲分配均匀,但运算速度快,脉冲分配均匀,但(溢出脉冲频率与
6、被积函溢出脉冲频率与被积函数值大小有关数值大小有关)速度调节不便,速度调节不便,插补精度插补精度需一定措施才能满足。需一定措施才能满足。应用:应用:应用广泛,易于实现应用广泛,易于实现多坐标联动多坐标联动。比较积分法第二节第二节 脉冲增量插补脉冲增量插补终点判别 结束 Y N 偏差判别 开始 坐标进给偏差计算 一、逐点比较法插补原理一、逐点比较法插补原理 第二节第二节 脉冲增量插补脉冲增量插补 一般来说,逐点比较法插补过程可按以下四个步骤四个步骤进行:偏差判别:判别刀具当前位置相对于给定轮廓的偏离情况。坐标进给:根据判别结果控制刀具向给定轮廓趋进。偏差计算:计算刀具当前位置与 给定轨迹之间的新
7、偏差,作为下 一步偏差判别的依据。终点判别:判断刀具是否到达终 点,若到达,结束插补;否则,继续 以上四个步骤。1.1.直线插补直线插补 (1 1)偏差计算)偏差计算 第一象限直线第一象限直线OE,起点,起点O为坐标为坐标 原点,直线的终点坐标原点,直线的终点坐标E(Xe,Ye),直线方程为:直线方程为:P(X,Y)为动点坐标,与直线)为动点坐标,与直线 的位置关系有三种情况:的位置关系有三种情况:动点在直线上方动点在直线上方动点在直线上动点在直线上动点在直线下方动点在直线下方 第二节第二节 脉冲增量插补脉冲增量插补P1P(X,Y)P2OXYEXeYXYe0(1)若若P1点在直线上方,则点在直
8、线上方,则 XeYXYe0(2)若若P点在直线上,则点在直线上,则 XeYXYe0(3)若)若P2点在直线下方,则点在直线下方,则 XeYXYe00时,表示动点在时,表示动点在OEOE上方,如点上方,如点P P1 1,应向,应向X X向进给。向进给。F F00的情况一同考虑。将F的运算采用递推算法予以简化,动点动点P Pi i(X Xi i,Y Yi i)的的F Fi i值为值为第二节第二节 脉冲增量插补脉冲增量插补P1P(X,Y)P2OXYEe ei iY YF FeeiieeiieeiieiYYXYXYXYXYXYXF)1(111 若若F Fi i00,表明,表明P Pi i(X Xi i
9、,Y Yi i)点在点在OEOE直线上方或在直线上,应直线上方或在直线上,应沿沿X X走一步,新点坐标值为走一步,新点坐标值为X Xi+1i+1=X Xi i+1+1,Y Yi+1i+1=Y Yi i,第二节第二节 脉冲增量插补脉冲增量插补 若若F Fi i00 F0,则动点位于圆弧外侧。,则动点位于圆弧外侧。若若F=0F=0,则动点在圆弧上。则动点在圆弧上。若若F0,F0,则动点在圆弧内侧。则动点在圆弧内侧。设第一象限动点设第一象限动点 的的F F值为值为 ,则,则,iix yiF 2222iiissFxyxy 若动点沿若动点沿-x方向走一步后,则:方向走一步后,则:1 12x2xF F)y
10、 y(x(x)y y(x(xF Fy yy y1,1,x xx xi ii i2 2s s2 2s s2 21 1i i2 21 1i i1 1i ii i1 1i ii i1 1i i 若动点沿若动点沿+y方向走一步后,则:方向走一步后,则:1 12y2yF FF F1 1y yy y,x xx xi ii i1 1i ii i1 1i ii i1 1i i动点坐标值第二节第二节 脉冲增量插补脉冲增量插补(3)终点判别)终点判别 圆弧插补终点判别与直线插补终点判别方法同。圆弧插补终点判别与直线插补终点判别方法同。211211FFxxxFFyyy0F(2)进给)进给 第一象限逆圆偏差判别函数第
11、一象限逆圆偏差判别函数F与进给方向的关系如下:与进给方向的关系如下:,沿,沿-x方向走一步:方向走一步:F0,沿,沿+y方向走一步:方向走一步:第二节第二节 脉冲增量插补脉冲增量插补N Y N Y x=xs y=ys F=0 n=xe-xs+ye-ys F0 y 向进给-x 向进给 FF+2y+1 yy+1 n0 开始 FF-2x+1 xx-1 nn-1 结束(4 4)圆弧插补软件流程图)圆弧插补软件流程图 X Y B(0,5)A(5,0)例例3-2 3-2 现欲加工第一象限逆圆弧现欲加工第一象限逆圆弧ABAB,如图所示,起点,如图所示,起点A A(5 5,0 0),终点),终点B B(0 0
12、,5 5),试用逐点比较法进行插补。),试用逐点比较法进行插补。圆弧插补过程:3.3.象限处理与坐标变换象限处理与坐标变换 (1 1)直线插补的象限处理)直线插补的象限处理 对于第二象限的直线,对于第二象限的直线,x x的进给方向与第一象限不同,的进给方向与第一象限不同,在偏差计算中只要将在偏差计算中只要将x xe e、y ye e取绝对值,代入第一象限的取绝对值,代入第一象限的插补公式即可插补运算。第三、第四象限也是一样。插补公式即可插补运算。第三、第四象限也是一样。所以不同象限的直线插补共用一套公式,所不同的是所以不同象限的直线插补共用一套公式,所不同的是进给方向不同。进给方向不同。四个象
13、限各轴插补运动方向如下图所示:四个象限各轴插补运动方向如下图所示:y x L1 F0 L2 L3 F0 F0 F0 L4 F0 F0 F0 F0 图5-8 四象限直线偏差符号和进给方向第二节第二节 脉冲增量插补脉冲增量插补图5-9 四个象限圆弧进给方向(2)圆弧插补的象限处理 Y Y NR2 NR1 SR2 SR1 X X NR3 NR4 SR3 SR4 a)逆圆弧 b)顺圆弧 第二节第二节 脉冲增量插补脉冲增量插补进给 坐标计算 偏差计算 终点判别+X 11iiXX 121iiiXFF 01ieXX-X 11iiXX 121iiiXFF 01ieXX+Y 11iiYY 121iiiYFF 0
14、1ieYY-Y 11iiYY 121iiiYFF 01ieYY 圆弧插补计算过程:参:表5-3 xy平面内圆弧和直线插补的进给与偏差计算第二节第二节 脉冲增量插补脉冲增量插补(3 3)圆弧自动过象限)圆弧自动过象限 圆弧过象限,即圆弧的起点和终点不在同一象限内。圆弧过象限,即圆弧的起点和终点不在同一象限内。若坐标采用绝对值进行插补运算,应先进行过象限判断,若坐标采用绝对值进行插补运算,应先进行过象限判断,当当X0或或Y0时过象限。需将圆弧分成两段圆弧,到时过象限。需将圆弧分成两段圆弧,到X0时,进行处理,对应调用插补程序。时,进行处理,对应调用插补程序。(4 4)坐标变换)坐标变换第二节第二节
15、 脉冲增量插补脉冲增量插补 6.6.逐点比较法合成进给速度逐点比较法合成进给速度v v 逐点比较法的特点:脉冲源每发出一个脉冲,就进给一步,不逐点比较法的特点:脉冲源每发出一个脉冲,就进给一步,不是发向是发向X X轴,就是发向轴,就是发向Y Y轴。轴。f fMFMF为脉冲源频率为脉冲源频率(Hz)(1/s)(Hz)(1/s),f fx x,f fy y 分别为分别为X X轴和轴和Y Y轴进给频率轴进给频率(Hz)(Hz)X X轴和轴和Y Y轴的进给速度轴的进给速度 (mm/min)(mm/min):合成进给速度:合成进给速度:式中,若式中,若f fx x=0=0或或f fy y=0=0时,也就
16、是刀具沿平行于坐标轴的方向切削,时,也就是刀具沿平行于坐标轴的方向切削,这时对应切削速度最大,相应的速度称为脉冲源速度这时对应切削速度最大,相应的速度称为脉冲源速度v vMFMF(脉冲源速(脉冲源速度与程编进给速度相同)度与程编进给速度相同)。2y2x2y2xff60vvvyxMFfff,60fvxxyy60fv 合成进给速度与脉冲源速度之比为:合成进给速度与脉冲源速度之比为:由式可见:由式可见:实际并非总是实际并非总是v=v=vMF:v v与与fMF、插补算法、零件轮廓的线插补算法、零件轮廓的线型型和和角有关。角有关。根据上式可作出根据上式可作出v v/v vMFMF随随变化的曲线。如图变化
17、的曲线。如图3-143-14所示,所示,v v/v vMFMF=0.707=0.7071 1,v vmaxmax/v vminmin=1.414=1.414,一般机床来讲可以满足要,一般机床来讲可以满足要求,认为求,认为逐点比较法的进给速度是比较平稳的。逐点比较法的进给速度是比较平稳的。c co os ss si in n1 1v vv vv vv vv vv vv vv vv vv vv vv vv vy yx x2 22 2y y2 22 2x xy yx x2 2y y2 2x xM MF FMFMFfv60 v/vMF 1 0.707 O 450 900 图3-14 逐点比较法进给速度
18、DDA合成进给速度二、二、数字积分法数字积分法 DDA基本原理:基本原理:如图所示,设有一函数如图所示,设有一函数Yf(t),求此函数在,求此函数在t0tn区间的区间的积分,就是求出此函数曲线与横坐标积分,就是求出此函数曲线与横坐标t在区间(在区间(t0,tn)所围)所围成的面积。如果将横坐标区间段划分为间隔为成的面积。如果将横坐标区间段划分为间隔为t的很多小区间,的很多小区间,当当t取足够小时,取足够小时,此面积可近似地视为曲线此面积可近似地视为曲线下许多小矩形面积之和。下许多小矩形面积之和。Y Y=f(t)Yi t t0 t1 ti+1 tn 0nttSf t dtt010nntiitiS
19、y dtyt 在数学运算时,取在数学运算时,取t为基本单为基本单位位“1”,则上式可简化为:,则上式可简化为:1niiSy Y Y=f(t)Yi t t0 t1 ti+1 tnt二、二、数字积分法数字积分法 1.DDA1.DDA直线插补直线插补 (1)(1)插补原理插补原理 设有一直线设有一直线OEOE,起点在原点,终点为,起点在原点,终点为 。分别表示动点在分别表示动点在x x、y y轴方向的速度,根据积分原理,轴方向的速度,根据积分原理,在在x x、y y轴方向的微小位移增量为:轴方向的微小位移增量为:,eeE xyvxvyvxyxyxVtyVtxeyeVyVLVyVL,eexy,xyvv
20、 对于直线函数来说,满足下式:对于直线函数来说,满足下式:xeyeVkxVkyVkL其中:二、二、数字积分法数字积分法 动点从原点走向终点的过程,可以看作是各坐标轴每动点从原点走向终点的过程,可以看作是各坐标轴每经过一个单位时间间隔经过一个单位时间间隔 ,分别以增量,分别以增量 同时累同时累加的过程。加的过程。,eeE xyvxvyvxy因此坐标轴的位移增量为:因此坐标轴的位移增量为:0101nteeinteeixkx dtkxtyky dtkytt,eekx ky返回第40页 1.DDA直线插补直线插补 xyX被积函数寄存器kxe X积分累加器 y积分累加器y被积函数寄存器kye+X轴溢出脉
21、冲y轴溢出脉冲txy平面直线插补原理图如下:平面直线插补原理图如下:返回第42页 1.DDA直线插补直线插补 假设取假设取 =1,经过,经过n次累加后次累加后x和和y 分别或同时到达终点,分别或同时到达终点,则下式成立:则下式成立:n是累加次数,取整数,是累加次数,取整数,k取小数。取小数。即先将直线终点坐标即先将直线终点坐标Xe,Ye缩小到缩小到kXe,kYe,然后再,然后再经经n次累加到达终点。另外还要保证沿坐标轴每次进给脉次累加到达终点。另外还要保证沿坐标轴每次进给脉冲不超过一个,保证插补精度,应使下式成立冲不超过一个,保证插补精度,应使下式成立11neeeineeeixkxtkx nx
22、ykytky ny 1kn t其中:11eexkxyky 1.DDA直线插补直线插补 如果存放如果存放Xe,Ye寄存器的位数是寄存器的位数是N,对应最大允许数字量为,对应最大允许数字量为 故有:故有:为使上式成立,不妨取为使上式成立,不妨取 代入得代入得 21N(21)1(21)1NeNexkxkykyk 12Nk 2112211212NeNNeNNxk xyk ynk121nk 所以:因此,累加次数为:(2)(2)终点判别:总累加次数终点判别:总累加次数n=2n=2N N,每累加一次减,每累加一次减1 1直至为直至为0 0,每次累加均进行终点判别。每次累加均进行终点判别。1.DDA直线插补直
23、线插补 DDA DDA 直线插补软件流程直线插补软件流程NERyRxevyevx2J0J 0,JyJ,xJ初始化初始化:+x走一步走一步+y走一步走一步VxRxRxJJJ0?J1JJEEE 溢出?入入 口口YYNNVyRyRyJJJ 溢出?出出 口口 T5-16 DDA 直线插补软件流程(P128)例例5-35-3:设有一直线:设有一直线OAOA,起点在坐标系原点,终点的坐标为,起点在坐标系原点,终点的坐标为(4 4,6 6),试用),试用DDADDA法直线插补此直线。法直线插补此直线。YA(4,6)XX积分器JRx+JVxX溢出Y积分器JRy+JVyY溢出终点判别累加次数JxyYA(4,6)
24、XX积分器X溢出Y积分器Y溢出终点判别000080+4=400+6=6074+4=8+016+6=8+4160+4=404+6=8+2154+4=8+012+6=8+0140+4=400+6=6034+4=8+016+6=8+4120+4=404+6=8+2114+4=8+012+6=8+010解:解:Jx=4、Jy=6 选择寄存器位数选择寄存器位数N=3,则累加次数,则累加次数328n RxxJJRyyJJxyJ累加次数012345678 v v2.2.数字积分法圆弧插补数字积分法圆弧插补(1)(1)插补原理插补原理第一象限圆弧第一象限圆弧AE,半径为,半径为R,起点为,起点为A(xs,ys
25、),终点为),终点为E(xe,ye)。)。N(xi,yi)为圆弧上任意动点。动点移动的速度为)为圆弧上任意动点。动点移动的速度为 v,则在两个坐标方向,则在两个坐标方向的分速度为的分速度为vx,vy。如下图所示,圆弧的方程为:。如下图所示,圆弧的方程为:动点动点N的分速度为:的分速度为:cossiniixRyRsincosixiiyiydxvvvvydtRRxdyvvvvxdtRR ,ssA xy,eeE xyvxvyv,ssA xy,eeE xyvxvyv当当V恒定时,则有:恒定时,则有:单位时间,单位时间,x、y位移增量为:位移增量为:iiiiiivxvx tytkytRvyvy txtk
26、xtR vkR取累加器容量为取累加器容量为 ,则各坐标的位移量为:,则各坐标的位移量为:2,1/2NNk 01011212ntiNintiNixkydtytykxdtxt 比较(2 2)终点判别:)终点判别:两轴达到终点的时间不同,分别判断,每进给一次减两轴达到终点的时间不同,分别判断,每进给一次减1。X轴所需进给次数:轴所需进给次数:Y轴所需轴所需进给次数进给次数:e es sEyEye es sExExy yy yJ Jx xx xJ Jxy平面圆弧插补原理框图:平面圆弧插补原理框图:X积分累加器RXJY积分累加器 VxJy VyJxRYJ时钟脉冲时钟脉冲X向溢出脉冲向溢出脉冲Y向溢出脉冲
27、向溢出脉冲 插补运算开始,累加器清零,插补运算开始,累加器清零,X寄存器存放寄存器存放Y坐标。坐标。Y寄存器存放寄存器存放X坐坐标。标。X方向有溢出时,要在方向有溢出时,要在 寄存器中减寄存器中减1,Y方向有溢出时,要在方向有溢出时,要在 寄寄存器中加存器中加1。VYJVxJ比较tN0?JEx DDA DDA 圆弧插补软件流程:圆弧插补软件流程:esEyesyyJxx,J0J 0,JxJ,yJExRyRxsvysvx初始化初始化:-x走一步走一步+y走一步走一步VxRxRxJJJ1JJExEx 溢出?进给了进给了x?x?入入 口口YYNNVyRyRyJJJ 溢出?出出 口口 NY0?JEy1J
28、JEyEy 进给了进给了y?y?1JJVyVy 1JJVxVx 0?J0JEyExYYNN(1 1)圆弧插补中被积函数寄存器存放的坐标值与对应坐)圆弧插补中被积函数寄存器存放的坐标值与对应坐标轴积分器的关系恰好相反标轴积分器的关系恰好相反,即即(2 2)圆弧插补中被积函数是变量,直线插补的被积函数)圆弧插补中被积函数是变量,直线插补的被积函数是常数。是常数。(3 3)圆弧插补终点判别需采用两个终点计数器。对于直)圆弧插补终点判别需采用两个终点计数器。对于直线插补,如果寄存器位数为线插补,如果寄存器位数为n n,无论直线长短都需迭代,无论直线长短都需迭代2 2n n次到达终点。次到达终点。VxJ
29、y VyJxDDA圆弧插补与直线插补的主要区别为圆弧插补与直线插补的主要区别为:2B(0,5)例:例:设有第一象限逆圆弧设有第一象限逆圆弧AB,起点为,起点为A(5,0),终点为),终点为B(0,5),设寄存器位数为),设寄存器位数为3。试用。试用DDA法插补此圆弧。法插补此圆弧。累加器累加器nx积分器积分器y积分器积分器000055005100055505200055821434111200555578+40143RxJxExJRyJyEyJ67833478+2601054455468+37010211155停止停止000 VyJx VxJy表5-5 DDA圆弧插补运算过程(P132)B(0
30、,5)3 5 4 Y O 1 2 3 X A(5,0)5 1 图 DDA圆弧插补实例24返回第6页3.3.数字积分法插补的象限处理数字积分法插补的象限处理 圆弧插补时被积函数是动点坐标,在插补过程中要进行圆弧插补时被积函数是动点坐标,在插补过程中要进行修正,坐标值的修改要看动点运动是使该坐标绝对值是增加修正,坐标值的修改要看动点运动是使该坐标绝对值是增加还是减少,来确定是加还是减少,来确定是加1 1还是减还是减1 1。四个象限直线和圆弧插补的坐标修改及进给方向如下表所示四个象限直线和圆弧插补的坐标修改及进给方向如下表所示NR1NR2NR3NR4SR1SR2SR3SR4+1-1+1-1-1+1-
31、1+1-1+1-1+1+1-1+1-1-+-+-+-+-VxJy VyJxxy表5-6 不同象限的脉冲分配及坐标修正(P132)4.DDA4.DDA插补的合成进给速度及稳速控制插补的合成进给速度及稳速控制(1 1)合成进给速度)合成进给速度 数字积分法的特点:脉冲源每产生一个脉冲,数字积分法的特点:脉冲源每产生一个脉冲,x、y轴均作一次累加计算,轴均作一次累加计算,超过寄存器容量时,溢出则进给。超过寄存器容量时,溢出则进给。例如插补直线:22xM FNyM FNxffyff各坐标的进给速度各坐标的进给速度(mm/min):式中:fMF脉冲源频率 Hz(1/s)fx,fyX,Y方向的平均 进给频
32、率NNyx22MFyyMFxxf6060fvf6060fv上式可见:上式可见:若脉冲源频率若脉冲源频率f fMF不变,则不变,则v v与与 有关。有关。即即L L越大,越大,v v越大,脉冲溢出越快,走刀块,否则相反。越大,脉冲溢出越快,走刀块,否则相反。若若L=(1L=(12 2N N),),则则v v的变化范围为的变化范围为(0(01)1)vMF,这是实际加工决这是实际加工决 不允许的。不允许的。合成进给速度为合成进给速度为:22Lxy22Lxy式中:式中:L被插补直线长度被插补直线长度 ;若插补圆弧,;若插补圆弧,L为圆弧半径为圆弧半径R。NyLyv222MFN22xf602x60vv4
33、.DDA插补的合成进给速度及稳速控制插补的合成进给速度及稳速控制1)1)按进给速度率数按进给速度率数FRNFRN代码编程代码编程 602MFNLvf(2 2)稳速控制)稳速控制令令FRN=vFRN=v0/L/L,由,由 得得FRN602Lv602fNNMF故可按故可按FRNFRN来调整来调整fMF,使,使v=vv=v0,达到匀速的目的。,达到匀速的目的。使v=v0 4.DDA插补的合成进给速度及稳速控制插补的合成进给速度及稳速控制 规格化数:规格化数:直线插补时,当被积函数寄存器直线插补时,当被积函数寄存器J JVxVx、J JVyVy中所存放的数值中所存放的数值x xe e、y ye e的的
34、最高位为最高位为1 1时,称为规时,称为规格化数,反之,若最高位为零,称为非规格化数。格化数,反之,若最高位为零,称为非规格化数。“左移规格化左移规格化”:将被积函数寄存器:将被积函数寄存器J JVxVx、J JVyVy中中存放的数值各位循环左移,直至最高位为存放的数值各位循环左移,直至最高位为1 1,右,右边各位填补边各位填补0 0的过程。的过程。直线插补左移规格化数的处理方法直线插补左移规格化数的处理方法:将:将X X轴与轴与Y Y轴被积函数寄存器里的数值同时左移(最低位移轴被积函数寄存器里的数值同时左移(最低位移入零),直到其中之一最高位为入零),直到其中之一最高位为1 1时为止。时为止
35、。2)2)左移规格化左移规格化4.DDA插补的合成进给速度及稳速控制插补的合成进给速度及稳速控制 若被积函数左移若被积函数左移n n位成为规格化数,其函数值扩大位成为规格化数,其函数值扩大2 2n n倍,倍,为了保持溢出的总脉冲数不变,就要减少累加次数。(为了保持溢出的总脉冲数不变,就要减少累加次数。(终终点判别计数器右移,使终点计数器点判别计数器右移,使终点计数器JE使用长度减少使用长度减少n位,实位,实现累加次数减少的目的)。现累加次数减少的目的)。如果直线终点坐标为(如果直线终点坐标为(10,6),寄存器与累加器位数是),寄存器与累加器位数是8,其规,其规格化前后情况如下所示:格化前后情
36、况如下所示:规格化前规格化前 规格化后规格化后 Xe=00001010 Xe=10100000 Ye=00000101 Ye=01010000 JE=00001111 JE=111100004.DDA插补的合成进给速度及稳速控制插补的合成进给速度及稳速控制 圆弧插补左移规格化与直线不同之处:被积函数寄存器存圆弧插补左移规格化与直线不同之处:被积函数寄存器存放最大数值的次高位是放最大数值的次高位是1 1为规格化数。为规格化数。圆弧左移规格化后,扩大了寄存器中存放的数值。左圆弧左移规格化后,扩大了寄存器中存放的数值。左移移n位,相当于乘位,相当于乘2n(即(即X轴与轴与Y轴被积函数寄存器存放的轴被
37、积函数寄存器存放的数据变为数据变为2nY,2nX),这样,假设,这样,假设Y轴有脉冲溢出时,则轴有脉冲溢出时,则X轴被积函数寄存器中存放的坐标被修正为轴被积函数寄存器中存放的坐标被修正为:上式指明,规格化处理后,插补中的坐标修正加上式指明,规格化处理后,插补中的坐标修正加1或减或减1,变成了加变成了加2n或减或减2n。直线和圆弧插补时规格化数处理方式不同,但均能提高溢出速度,直线和圆弧插补时规格化数处理方式不同,但均能提高溢出速度,并能使溢出脉冲变得比较均匀。并能使溢出脉冲变得比较均匀。nnnnYYY22)1(224.DDA插补的合成进给速度及稳速控制插补的合成进给速度及稳速控制 分析:直线插
38、补左移规格化使分析:直线插补左移规格化使L L范围缩小,速度稳定性提高。范围缩小,速度稳定性提高。M MF F1 1.4 41 14 4)V V-(0 0.5 5故故:v v1 1)n nm ma ax xn nm ma ax x1 1n nm mi in n1 1n nm mi in n1 1.4 41 14 4(2 2L L1 1,2 2y yx x:1 11 11 11 10 0)时时,即即(1 11 11 11 10 0,(2 2)L L2 2L L0 0,y y,2 2x x:0 00 00 0)如如(1 10 00 00 00 0,0 00 0时时,(1 1)L LN22y2Lyv
39、MFN22xf602x60vv参考公式:若L=(12N),则v的变化范围为(01)vMF逐点比较法合成进给速度4.DDA插补的合成进给速度及稳速控制插补的合成进给速度及稳速控制半加载:半加载:DDADDA插补前,给余数寄存器插补前,给余数寄存器J JRxRx、J JRyRy置容量的一半值置容量的一半值2 2N-1N-1,这样,只要再累加,这样,只要再累加2 2N-1N-1,就可以产生第一个溢出脉冲,就可以产生第一个溢出脉冲,改善了溢出脉冲的时间分布,减少插补误差。改善了溢出脉冲的时间分布,减少插补误差。2)2)余数寄存器预置数余数寄存器预置数5.提高提高DDA插补精度的措施插补精度的措施1)1
40、)减少脉冲当量减少脉冲当量2)2)螺旋线插补螺旋线插补6.多坐标插补多坐标插补1)1)空间直线插补空间直线插补轨迹控制轨迹控制+速度控制:速度控制:保障加工精度、刀具寿命和生产保障加工精度、刀具寿命和生产率率一、进给速度控制一、进给速度控制1、脉冲增量插补:、脉冲增量插补:软件延时法、中断控制法软件延时法、中断控制法2、数据采样法、数据采样法:二、加、减速度控制二、加、减速度控制第四节第四节 数控装置的进给速度控制数控装置的进给速度控制比较异同:比较异同:直线插补和圆弧插补、逐点比较法和直线插补和圆弧插补、逐点比较法和DDADDA插补插补法法逐点比较法:每来一个脉冲逐点比较法:每来一个脉冲t,
41、x或或y轴总有且仅有一个轴进给。轴总有且仅有一个轴进给。DDA法:每来一个脉冲法:每来一个脉冲t,x和和y轴均作累加,但不一定进给,轴均作累加,但不一定进给,且可能同时进给。且可能同时进给。直线插补:被积函数寄存器数值只与终点坐标值有关,与动点直线插补:被积函数寄存器数值只与终点坐标值有关,与动点 无关,故每次进给不必修正无关,故每次进给不必修正x、y值值。圆弧插补:圆弧插补:被积函数寄存器数值与动点有关,每次进给必被积函数寄存器数值与动点有关,每次进给必 修正修正x x、y y值,留值,留下一周期下一周期插补运算用。插补运算用。DDADDA圆弧插补:圆弧插补:(1)(1)xx=1=1,J J
42、ExEx-1 (2)-1 (2)xx=1=1,修改下周期,修改下周期J Jvyvy(x(xi i)(3)J(3)JRxRx累加为上次累加为上次J JRxRx和本次的和本次的J Jvxvx相加。相加。(4(4)J Jvxvx(y(yi i),J),Jvyvy(x(xi i)思考与练习(思考与练习(P154P154)简答:简答:5-1、5-2、5-12、计算:计算:5-3、5-5、5-10、5-11(写出插补过程并画出插补轨迹)(写出插补过程并画出插补轨迹)第五章数控装置的轨迹控制原理数控技术数控技术数控技术62人有了知识,就会具备各种分析能力,明辨是非的能力。所以我们要勤恳读书,广泛阅读,古人说“书中自有黄金屋。”通过阅读科技书籍,我们能丰富知识,培养逻辑思维能力;通过阅读文学作品,我们能提高文学鉴赏水平,培养文学情趣;通过阅读报刊,我们能增长见识,扩大自己的知识面。有许多书籍还能培养我们的道德情操,给我们巨大的精神力量,鼓舞我们前进。第五章数控装置的轨迹控制原理数控技术数控技术数控技术63
侵权处理QQ:3464097650--上传资料QQ:3464097650
【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。