1、12.3 质心运动定理 一、质量中心 质点系在力的作用下,其运动状质点系在力的作用下,其运动状态与各质点的质量及其相互的位态与各质点的质量及其相互的位置都有关系,即与质点系的质量置都有关系,即与质点系的质量分布状况有关。分布状况有关。1.1.定义:(12.1012.10)由式(12.10)所定义的质心位置反映出质点系质量分布的一种 特征质心的概念及其运动在质点系(特别是刚体特别是刚体)动力学中 具有重要地位。mmiic?rr2.质心的力学意义 若质点系中各质点的质量相等,则:1/n 与 i 无关,为公因子。式中:ri系数 1/n 表示第 i个质点的质量在质点系质量中所占的比例,质心的矢径rc即
2、为各质点的平均矢径。12.ncmmmm mm?rrrr(12.11)12.1ninn?rrrrmmiic?rr若质点系中各质点的质量不相等。则有:icimrrm?ri 的系数表示第 i 个质点的质量在质点系的质量所占的比例,质心的矢径rc为即为各质点按其质量在质点系质量中所占的比例的平均位置。质心的作用 由讨论可见,质心的位置与质点系中的质量分布状况有关,它在一定程度上反映了质点系的质量分布状况,所以质心的概念是动力学的重要概念之一。(12.12),(12.13)iiiiiiCCCmxm ymzxyzmmm?质心的坐标质心的坐标 计算质心位置时,常用上式在直角坐标系的投影形式,即计算质心位置时
3、,常用上式在直角坐标系的投影形式,即 式中 mi点为第i个质点的质量,xi、yi、zi,第i个质点的位置坐标,m为质点系的质量。质心是质点系中特定的一个点,质点系运动,质心也在运动。可见,如果把质点系的质量都集中于质心做为一个质点,那么此质点的动量就等于质点系的动量,可见质心运动具有特殊意义。(12.10)icimrrm?可见物体在重力场中运动可见物体在重力场中运动时,重心与质心相重合。但应当注意,质心与重心是两应当注意,质心与重心是两个不同的概念。个不同的概念。质心与重心的比较:质心与重心的比较:若将上列各式等号右端的分子与若将上列各式等号右端的分子与分母同乘以重力加速度分母同乘以重力加速度
4、g,就得到,就得到质点系的重心坐标公式。质点系的重心坐标公式。重心仅在质点系受到重力作用(重心仅在质点系受到重力作用(即在地球表面附近即在地球表面附近)时才存在,)时才存在,而质心则与质点系是否受到重力作用无关,它随质点系的存在而存在。因此,质心概念的适用范围远较重心广泛。在而存在。因此,质心概念的适用范围远较重心广泛。,iiiiiiCCCm xm ym zxyzmmm?(12-13)或 2、质心速度 质心C的运动速度可根据式(12.10)导出:iiCCmddtmm?vrpvciimm?vv式(12.15)为计算质点系动量的简便方法。由上式可知,不论质点如何运动,在计算质点系的动量时均可不考虑
5、其中每一质点的速度,而只需知道质点系的质量和质心的速度就足够了。(12.14)ciimm?p=vv(12.15)(12.10)i iCmm?rr 设其角速度为w,质心C至转轴的距离为 e,则由式(12.15)可知,此刚体动量的大小为 例如绕定轴转动的刚体,ciimm?p=vvcpmvme?=显然,当刚体质心位于转轴上时,则不论转动角速度多大,其动量恒 等于零。3、质心加速度 将式(12.14)对时间求导,得:CCddt?va(12.17)ciimm?eiaaFd()d()ddddiiCmmttt?vvp(12.14)iiCCmddtmm?vrpvcmp=v二、质心运动定理二、质心运动定理 上式
6、表明,质点系的质量与质心加速度的乘积等于作用上式表明,质点系的质量与质心加速度的乘积等于作用于质点系外力的矢量和。于质点系外力的矢量和。同时指出:内力不能改变质心的运动。同时指出:内力不能改变质心的运动。eeCiiiRmm?aaFF 形式上,形式上,质心运动定理与质点的动力学基本方程完全相完全相似,因此质心运动定理也可叙述如下:似,因此质心运动定理也可叙述如下:(12.17)质点系质心的运动,犹如一个质点的运动,此质点的质量等于整个质点系的质量,且作用于此质点上的力等于作用于整个质点系上的外力的矢量和。质心运动定理在坐标轴上投影:ecxecyeczmxFmyFmzF?质点系质量与质心加速度在某
7、一轴上的投影的乘积等于质点系所受外力的主矢量在同一轴上的投影,该式称为投影形式的质心运动定理。实际应用时,可采用投影形式。ciimm?eiaaF(12.18)(12.17)如果 三、质心运动守恒 ciimm?eiaaF 如果作用于质点系的所有外力在某一轴上投影的代数和恒等于零。则质心沿该轴的坐标保持不变。以上结论,称为质心运动守恒定律。0?eRF0cm?acontc?则v则质心作匀速直线运动;若开始静止,则质心位置始终保持不变。注意:只有外力才影响质心的运动,内力不影响质心运动,且没有外力时,质心运动守恒,原为静止的质点系保持静止。如汽车在光滑路面上发动,如果路面没有摩擦力,则轮子空转不动,即
8、轮心不向前运动,必须要有外力才能使其运动。有很多实例都可用来说明质心的运动完全取决于作用 在质点系上的外力而与内力无关。例如,人在完全没有摩擦的光滑路面上行走是不可能的;汽车开动时,发动机汽缸内的燃气压力对汽车整体来说是内力,不能使车子前进,只是当燃气推动活塞,通过传动机构带动主动轮转动,地面对主动轮作用了向前的摩擦力,而且这个摩擦力大于总的阻力时,汽车才能前进。例3 设有一电动机用螺旋栓固定在水平地面上,如图,电动机外壳连同定子的质量为m1,它们的质心为 c1,在转子的轴线上,转子的质量为 m2。由于制造不够精确,因而其质心与转子轴线相距为 e,试求当电动机以匀角速度转动时,螺旋栓所受的水平
9、剪力和地面的铅垂反力。解:(1)研究整个电动机 看作一个整体,受力分析如图:作用于质心上的外力有:重力m1g、m2g;螺栓的约束反力Rx、Ry。RyRx2g1mmgyecc1cx2t(2)建立静坐标如图:电动机质心C的方程为:1 1222212121122221212ccmxm xm xxmmmmm ym ym yymmmm?式中:x1=y1=0,是外壳与定子的质心c1的坐标;x2、y2是转子c2的坐标。设初瞬时,c2位于x轴上,经过时间t后,转角t,于是有:22cossinxetyet?(1)(2)RyRx2g1mmgyecc1cx2t22cossinxetyet?(3)代入质心坐标公式得
10、质心 c 的运动方程:212212cossinccmxetmmmyetmm?22221212ccm xm yxymmmm?;(1)(2)(3)RyRx2g1mmgyecc1cx2t22122212cossinccmxetmmmyetmm?将质心c的运动方程等式两端微分得:212212cossinccmxetmmmyetmm?(3)(4)RyRx2g1mmgyecc1cx2t(4)质心运动微分方程:?2122212212cossincxcymmxm etRmmym eRm gm g?从而可得到:222122cossinxyRm etRmgm gm et?22122212cossinccmxetm
11、mmyetmm?RyRx2g1mmgyecc1cx2t222122cossinxyRm etRmgm gm et?Rx 是螺栓给电动机的水平动反力,它与电动机的角速度有关,而电动机给螺栓的剪力则与Rx等值反向。Ry电动机在铅垂方向上所受的全反力,当Ry 0时,其方向向上,它来自地面;当Ry 0时,其方向向下,故知它必来自螺栓拉力,这时电动机有跳离地面的趋势所以地面未受压而不会给电动机反力。RyRx2g1mmgyecc1cx2t 通过本例可知,由于机器上转子的质心不在转轴上,质心的位置要随时间而改变,因而,基座就受到了周期性压力的作用。这种随时间而作周期性变化的动压力往往引起基座的振动,以至影响
12、机器的正常工作或损坏其零件。为防止这种现象发生,在机器的设计和安装中必须尽可能地使其转动部分的质心位于转轴,以便减小基座所受的动压力。RyRx2g1mmgyecc1cx2t 习题12.19 均质杆AB,长2L,铅直地静置于光滑水平面上受到微小扰动后,无初速地倒下。求杆AB在倒下过程中,点A的轨迹方程。,CN,BBmgxCy,AAoF 解:以均质杆AB为研究对象,并以杆AB铅直时的 轴线为 y轴,建立图示坐标系。AB杆倒下过程中所受外力 有:重力mg,光滑水平面的法向反力FN,杆在倒下的过程中有:0eixeRx?FF即质点系动量在 x方向上守恒,0?ccoxx,CN,BBmgxCy,AAoF又:
13、t=0时杆处于静止故质心运动在x方向上守恒,有:设任一瞬时,杆AB与x轴的夹角为,则有:?sin2cosLyLxAA?所以点A的轨迹方程为:142222?LyLxAA即:A点沿椭圆轨迹运动。,CN,BBmgxCy,AAoF0?ccoxx000 xtp?例1:水平光滑直线轨道上有一小车,车上站立一人。设小车重W,人重Q,开始系统静止。若人在小车上走动,解:以人和小车为质点系,受力如图 运动分析:t=0 时系统静止;1N2NW Q vr v 由受力分析可知 0,conteixxFp?可知 x y o 某瞬时人相对小车的速度为vr,试求此时的车速v?t时刻:车v,人v+vr 000 xtp?车重W,人重Q,某瞬时人相对小车的速度为vr,试求此时的车速 v?t=0时系统静止;t:车v,人v+vr 1N2NW Q vr v 0,conteixxFp?可知?0 xtrQWpvvvgg?x y o?rQvvQW?解得:(静止)例12.7 浮动起重机的质量m120000kg,吊起质量为m2 2000kg的重物,求当吊杆AB由铅垂线成60度角的位置转到与铅 垂线成30度角的位置时,起重机的水平位移。吊杆长AB8m,吊杆重量及水的阻力均不计,又系统原为静止。xy1m g2cm2Fm1c1ggA30SdF2cd1cg2mA60
侵权处理QQ:3464097650--上传资料QQ:3464097650
【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。