ImageVerifierCode 换一换
格式:PPT , 页数:30 ,大小:652.51KB ,
文档编号:4587895      下载积分:22 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-4587895.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(晟晟文业)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(数字图像处理压缩基础知识课件.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

数字图像处理压缩基础知识课件.ppt

1、CS 414 Multimedia Systems Design Lecture 7 Basics of Compression(Part 1)CS 414-Spring 2014Administrative nMP1 is postednSee Class website and compassnMP1 lecture will be on February 7 in class.Please,read the MP1 before attending the classnMP1 due February 19(Wednesday)5pm.Question on DLP 3D Glasses

2、nDLP=Digital Light Processing nDLP=projection technology nDLP=A Texas Instrument process of projecting video images using a light source reflecting off an array of tens of thousands of microscopic mirrors.CS 414-Spring 2014Today Introduced ConceptsnNeed for compression and compression algorithms cla

3、ssificationnBasic Coding ConceptsFixed-length coding and variable-length codingCompression RatioEntropynRLE Compression(Entropy Coding)nHuffman Compression(Statistical Entropy Coding)CS 414-Spring 2014Reading nMedia Coding and Content Processing,Steinmetz,Nahrstedt,Prentice Hall,2002Data Compression

4、 chapter 7nBasic coding concepts Sections 7.1-7.4 and lecture notesCS 414-Spring 2014Integrating Aspects of MultimediaCS 414-Spring 2014Image/VideoCaptureImage/Video InformationRepresentationMediaServerStorageTransmissionCompressionProcessingAudio/VideoPresentationPlaybackAudio/Video Perception/Play

5、backAudio InformationRepresentationTransmissionAudioCaptureA/V PlaybackNeed for CompressionnUncompressed audion8 KHz,8 bit8K per second30M per hourn44.1 KHz,16 bit88.2K per second317.5M per hourn100 Gbyte disk holds 315 hours of CD quality musicnUncompressed videon640 x 480 resolution,8 bit color,24

6、 fps7.37 Mbytes per second26.5 Gbytes per hourn640 x 480 resolution,24 bit(3 bytes)color,30 fps27.6 Mbytes per second99.5 Gbytes per hourn1980 x 1080 resolution,24 bits,60 fps(384,912 MBps)1,385 Gbyte per 1 hour of HDTVCS 414-Spring 2014Broad ClassificationnEntropy Coding(statistical)lossless;indepe

7、ndent of data characteristicse.g.RLE,Huffman,LZW,Arithmetic codingnSource Codinglossy;may consider semantics of the datadepends on characteristics of the datae.g.DCT,DPCM,ADPCM,color model transformnHybrid Coding(used by most multimedia systems)combine entropy with source encodinge.g.,JPEG-2000,H.26

8、4,MPEG-2,MPEG-4,MPEG-7CS 414-Spring 2014Data CompressionnBranch of information theoryminimize amount of information to be transmittednTransform a sequence of characters into a new string of bits same information contentlength as short as possibleCS 414-Spring 2014ConceptsnCoding(the code)maps source

9、 messages from alphabet(A)into code words(B)nSource message(symbol)is basic unit into which a string is partitionedcan be a single letter or a string of lettersnEXAMPLE:aa bbb cccc ddddd eeeeee fffffffggggggggA=a,b,c,d,e,f,g,spaceB=0,1CS 414-Spring 2014Taxonomy of CodesnBlock-blocksource msgs and co

10、de words of fixed length;e.g.,ASCIInBlock-variablesource message fixed,code words variable;e.g.,Huffman codingnVariable-blocksource variable,code word fixed;e.g.,RLEnVariable-variablesource variable,code words variable;e.g.,ArithmeticCS 414-Spring 2014Example of Block-BlocknCoding“aa bbb cccc ddddd

11、eeeeee fffffffgggggggg”nRequires 120 bitsSymbolCode worda000b001c010d011e100f101g110space111Example of Variable-VariablenCoding“aa bbb cccc ddddd eeeeee fffffffgggggggg”nRequires 30 bits dont forget the spacesSymbolCode wordaa0bbb1cccc10ddddd11eeeeee100fffffff101gggggggg110space111Concepts(cont.)nA

12、code isdistinct if each code word can be distinguished from every other(mapping is one-to-one)uniquely decodable if every code word is identifiable when immersed in a sequence of code wordsne.g.,with previous table,message 11 could be defined as either ddddd or bbbbbbCS 414-Spring 2014Static CodesnM

13、apping is fixed before transmissionmessage represented by same codeword every time it appears in message(ensemble)Huffman coding is an examplenBetter for independent sequencesprobabilities of symbol occurrences must be known in advance;CS 414-Spring 2014Dynamic CodesnMapping changes over timealso re

14、ferred to as adaptive codingnAttempts to exploit locality of referenceperiodic,frequent occurrences of messagesdynamic Huffman is an examplenHybrids?build set of codes,select based on inputCS 414-Spring 2014Traditional Evaluation CriterianAlgorithm complexityrunning timenAmount of compressionredunda

15、ncycompression rationHow to measure?CS 414-Spring 2014Measure of InformationnConsider symbols si and the probability of occurrence of each symbol p(si)nIn case of fixed-length coding,smallest number of bits per symbol needed is L log2(N)bits per symbolExample:Message with 5 symbols need 3 bits(L log

16、25)CS 414-Spring 2014Variable-Length Coding-EntropynWhat is the minimum number of bits per symbol?nAnswer:Shannons result theoretical minimum average number of bits per code word is known as Entropy(H)nEntropy measure of uncertainty in random variableniiispsp1)(log)(2CS 414-Spring 2014Entropy Exampl

17、enAlphabet=A,Bp(A)=0.4;p(B)=0.6nCompute Entropy(H)-0.4*log2 0.4+-0.6*log2 0.6=.97 bitsCS 414-Spring 2014Compression RationCompare the average message length and the average codeword lengthe.g.,average L(message)/average L(codeword)nExample:aa,bbb,cccc,ddddd,eeeeee,fffffff,ggggggggAverage message len

18、gth is 5If we use code-words from slide 11,then nWe have 0,1,10,11,100,101,110 nAverage codeword length is 2.14.BitsCompression ratio:5/2.14=2.336CS 414-Spring 2014SymmetrynSymmetric compressionrequires same time for encoding and decodingused for live mode applications(teleconference)nAsymmetric com

19、pressionperformed once when enough time is availabledecompression performed frequently,must be fastused for retrieval mode applications(e.g.,an interactive CD-ROM)CS 414-Spring 2014Entropy Coding Algorithms(Content Dependent Coding)nRun-length Encoding(RLE)Replaces sequence of the same consecutive b

20、ytes with number of occurrencesNumber of occurrences is indicated by a special flag(e.g.,!)Example:nabcccccccccdeffffggg (20 Bytes)nabc!9def!4ggg(13 bytes)CS 414-Spring 2014Variations of RLE(Zero-suppression technique)nAssumes that only one symbol appears often(blank)nReplace blank sequence by M-byt

21、e and a byte with number of blanks in sequenceExample:M3,M4,M14,nSome other definitions are possibleExample:nM4=8 blanks,M5=16 blanks,M4M5=24 blanksCS 414-Spring 2014Huffman Encoding nStatistical encodingnTo determine Huffman code,it is useful to construct a binary treenLeaves are characters to be e

22、ncodednNodes carry occurrence probabilities of the characters belonging to the subtreenExample:How does a Huffman code look like for symbols with statistical symbol occurrence probabilities:P(A)=8/20,P(B)=3/20,P(C)=7/20,P(D)=2/20?CS 414-Spring 2014Huffman Encoding(Example)P(C)=0.09P(E)=0.11P(D)=0.13

23、P(A)=0.16P(B)=0.51Step 1:Sort all Symbols according to their probabilities(left to right)from Smallest to largest these are the leaves of the Huffman treeCS 414-Spring 2014Huffman Encoding(Example)P(C)=0.09P(E)=0.11P(D)=0.13P(A)=0.16P(B)=0.51P(CE)=0.20P(DA)=0.29P(CEDA)=0.49P(CEDAB)=1Step 2:Build a b

24、inary tree from left toRight Policy:always connect two smaller nodes together(e.g.,P(CE)and P(DA)had both Probabilities that were smaller than P(B),Hence those two did connect firstCS 414-Spring 2014Huffman Encoding(Example)P(C)=0.09P(E)=0.11P(D)=0.13P(A)=0.16P(B)=0.51P(CE)=0.20P(DA)=0.29P(CEDA)=0.4

25、9P(CEDAB)=1010101Step 3:label left branches of the treeWith 0 and right branches of the treeWith 101CS 414-Spring 2014Huffman Encoding(Example)P(C)=0.09P(E)=0.11P(D)=0.13P(A)=0.16P(B)=0.51P(CE)=0.20P(DA)=0.29P(CEDA)=0.49P(CEDAB)=1010101Step 4:Create Huffman CodeSymbol A=011Symbol B=1Symbol C=000Symbol D=010Symbol E=00101CS 414-Spring 2014Summary nCompression algorithms are of great importance when processing and transmitting AudioImagesVideo CS 414-Spring 2014

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|