1、第二节第二节 极限的运算法则极限的运算法则一、极限的运算法则一、极限的运算法则二、求极限的方法举例二、求极限的方法举例三、小结三、小结 思考题思考题主讲:唐辉成主讲:唐辉成定理定理.0,)()(lim)3(;)()(lim)2(;)()(lim)1(,)(lim,)(lim BBAxgxfBAxgxfBAxgxfBxgAxf其中其中则则设设证证.)(lim,)(limBxgAxf .0,0.)(,)(其其中中BxgAxf由无穷小运算法则由无穷小运算法则,得得一、极限运算法则)()()(BAxgxf .0.)1(成成立立)()()(BAxgxf ABBA )()(BA.0.)2(成立成立BAxg
2、xf)()(BABA )(BBAB.0 AB,0,0 B又又,0 ,00时时当当 xx,2B BBBB21 B21 推论推论1 1).(lim)(lim,)(limxfcxcfcxf 则则为常数为常数而而存在存在如果如果常数因子可以提到极限记号外面常数因子可以提到极限记号外面.)(lim)(lim,)(limnnxfxfnxf 则则是是正正整整数数而而存存在在如如果果推论推论2 2,21)(2BBB ,2)(12BBB 故故有界,有界,.)3(成立成立二、求极限方法举例二、求极限方法举例例例1 1.531lim232 xxxx求求解解)53(lim22 xxx5lim3limlim2222 x
3、xxxx5limlim3)lim(2222 xxxxx52322 ,03 531lim232 xxxx)53(lim1limlim22232 xxxxxx.37 3123 小结小结:则则有有设设,)(.1110nnnaxaxaxf nnxxnxxxxaxaxaxf 110)lim()lim()(lim000nnnaxaxa 10100).(0 xf 则则有有且且设设,0)(,)()()(.20 xQxQxPxf)(lim)(lim)(lim000 xQxPxfxxxxxx)()(00 xQxP).(0 xf.,0)(0则商的法则不能应用则商的法则不能应用若若 xQ解解)32(lim21 xxx
4、,0 注意:商的法则不能用注意:商的法则不能用)14(lim1 xx又又,03 1432lim21 xxxx.030 由无穷小与无穷大的关系由无穷小与无穷大的关系,得得例例2 2.3214lim21 xxxx求求.3214lim21 xxxx解解例例3 3.321lim221 xxxx求求.,1分分母母的的极极限限都都是是零零分分子子时时x.1后再求极限后再求极限因子因子先约去不为零的无穷小先约去不为零的无穷小 x)1)(3()1)(1(lim321lim1221 xxxxxxxxx31lim1 xxx.21)00(型型(消去零因子法消去零因子法)例例4 4.147532lim2323 xxx
5、xx求求解解.,分分母母的的极极限限都都是是无无穷穷大大分分子子时时 x)(型型 .,3再再求求极极限限分分出出无无穷穷小小去去除除分分子子分分母母先先用用x332323147532lim147532limxxxxxxxxxx .72(无穷小因子分出法无穷小因子分出法)小结小结:为非负整数时有为非负整数时有和和当当nmba,0,000 ,0,lim00110110mnmnmnbabxbxbaxaxannnmmmx当当当当当当无穷小分出法无穷小分出法:以分母中自变量的最高次幂除分以分母中自变量的最高次幂除分子子,分母分母,以分出无穷小以分出无穷小,然后再求极限然后再求极限.例例5 5).21(l
6、im222nnnnn 求求解解是无穷小之和是无穷小之和时时,n222221lim)21(limnnnnnnnn 2)1(21limnnnn )11(21limnn .21 先变形再求极限先变形再求极限.例例6 6.sinlimxxx 求求解解,1,为无穷小为无穷小时时当当xx.sin 是是有有界界函函数数而而x.0sinlim xxxxxysin 例例7 7).(lim,0,10,1)(02xfxxxxxfx 求求设设yox1xy 112 xy解解两两个个单单侧侧极极限限为为是是函函数数的的分分段段点点,0 x)1(lim)(lim00 xxfxx ,1)1(lim)(lim200 xxfxx
7、,1 左右极限存在且相等左右极限存在且相等,.1)(lim0 xfx故故复合函数极限运算法则复合函数极限运算法则(P27)定理定理 设函数设函数y=f(u)及及u=(x)构成构成复合函数复合函数y=f (x),在在x0某个去心邻域某个去心邻域,若若且且(x)a,则复合函数则复合函数y=f (x)在在 xx0时时的极限为的极限为Aufxauxx)(lim,a)(lim0.)(lim)(lima0Aufxfuxx计算复合函数的极限的方法:计算复合函数的极限的方法:如果要计算复合函数时的极限,应先求 中间变量(x)的极限,若,若 ,再求ua时f(u)的极限 ,综上而得极限)(lim0 xfxx。当x
8、x。当xx a)(lim0 xxx)(limufau)(lim0 xfxx三、小结1.极限的四则运算法则及其推论极限的四则运算法则及其推论;2.极限求法极限求法;a.多项式与分式函数代入法求极限多项式与分式函数代入法求极限;b.消去零因子法求极限消去零因子法求极限;c.无穷小因子分出法求极限无穷小因子分出法求极限;d.利用无穷小运算性质求极限利用无穷小运算性质求极限;e.利用左右极限求分段函数极限利用左右极限求分段函数极限.思考题思考题 在某个过程中,若在某个过程中,若 有极限,有极限,无极限,那么无极限,那么 是否有极限?为是否有极限?为什么?什么?)(xf)(xg)()(xgxf 思考题解
9、答思考题解答没有极限没有极限假设假设 有极限,有极限,)()(xgxf)(xf有极限,有极限,由极限运算法则可知:由极限运算法则可知:)()()()(xfxgxfxg 必有极限,必有极限,与已知矛盾,与已知矛盾,故假设错误故假设错误._1sinlim520 xxx、._33lim132 xxx、一、填空题一、填空题:._11lim231 xxx、._)112)(11(lim32 xxxx、._5)3)(2)(1(lim43 nnnnn、._coslim6 xxxeex、练练 习习 题题._2324lim72240 xxxxxx、._)12()23()32(lim8503020 xxxx、二、求下列各极限二、求下列各极限:)21.41211(lim1nn 、hxhxh220)(lim2 、)1311(lim331xxx 、
侵权处理QQ:3464097650--上传资料QQ:3464097650
【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。