ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:476.50KB ,
文档编号:4637843      下载积分:3 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-4637843.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(Q123)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(2022新人教版九年级上册《数学》 第24章圆知识完整归纳.doc)为本站会员(Q123)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

2022新人教版九年级上册《数学》 第24章圆知识完整归纳.doc

1、第24章 圆第一节 圆的有关性质知识点一:圆的定义 1、圆可以看作是到定点(圆心O)的距离等于定长(半径r)的点的集合。 2、圆的特征 (1)圆上各点到定点(圆心O)的距离都等于定长(半径)。 (2)到定点的距离等于定长的点都在同一个圆上。 注意:(1)圆指的是圆周,即一条封闭的曲线,而不是圆面。 (2)“圆上的点”指圆周上的点,圆心不在圆周上。知识点二:圆的相关概念1、 弦与直径:连结圆上任意两点的线段叫做弦,经过圆心的弦叫做直径。注意:直径是过圆心的弦,凡是直径都是弦,但弦不一定是直径。因此,在提到到“弦”时,如果没有特殊说明,不要忘记直径这种特殊的弦。2、 弧、半圆、优弧、劣弧:圆上任意

2、两点间的部分叫做圆弧,简称弧。圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆。大于半圆的弧(用三个点表示)叫优弧;小于半圆的弧叫做劣弧 注意:半圆是弧,但弧不一定是半圆。半圆既不是优弧,也不是劣弧。3、等圆:能够重合的两个圆叫做等圆周。4、等弧:在同圆或等圆中,能够互相重合的弧叫做等弧。注意:等弧的长度相等,但长度相等的弧不一定是等弧。知识点三:圆的对称性1、 圆是轴对称图形,任何一条直径所在的直线都是圆的对称轴。 注意:(1)圆的对称轴有无数条 (2)因为直径是弦,弦是线段,而对称轴是直线,所以不能说“圆的对称轴是直径”,而应该说“圆的对称轴是直径所在的直线”或说成“圆的对称轴

3、是经过圆心的直线”。2、 圆是中心对称图形,圆心就是它的对称中心,不仅如此,把圆绕圆心旋转任意一个角度,所得的图形都与原图形重合。知识点四:垂径定理及推论(重点)1、垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。如图,AB是的直径,CD是的弦,AB交CD于点E,若ABCD,则CE=DE,CB=DB,AC=AD注意:(1)这里的垂径可以是直径、半径或过圆心的直线或线段,其本质是“过圆心”。(2)垂径定理中的“弦”为直径时,结论仍成立。 2、垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。如图:CD是非直径的弦,AB是直径,若CE=DE,则ABCD,CB=DB,

4、AC=AD。 注意:被平分的弦不是直径,因为直径是弦,两直径互相平分,结论就不成立,如图直径AB平分CD,但AB不垂直于CD。重点剖析(1) 垂径定理是证明线段相等、弧相等的重要依据,同时也为圆的计算和作图问题提供了思考的方法的理论依据。(2) 一条直线如果具有:经过圆心;垂直于弦;平分弦(被平分的弦不是直径); 平分弦所对的优弧;平分弦所对的劣弧, 这五条中的任意两条, 那么必然具备其其余三条。 即:是直径 中 任意2 个条件推出其他3个结论。3、垂径定理的推论2: 圆的两条平行弦所夹的弧相等。 即:在中,知识点五:弧、弦、圆心角之间的关系(重点、难点)1、圆心角定理:在同圆或等圆中,相等的

5、圆心角所对的弦相等,所对的弧也相等。如图,在中,若AOB=COD,则AB=CD,AB=CD. 2、推论:(1)在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等。(2)在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧相等。定理和推论可概括为:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所以的其余各组量也相等。知识点六:圆周角定理及其推论 1、圆周角定理:一条弧所对的圆周角等于它所对的圆心的角的一半。如图:ACB=AOB,ADB=AOB. 2、圆周角定理的推论:(1)同弧或等弧所对的圆周角相等。(2)半圆(或直径)所对的圆周角是直角

6、;90的圆周角所对的弦是直径.如图,若AB为直径,则C=D=90;若C或D为90,则AB是直径。注意:(1)同弧指同一条弧,同一条弧所对的圆周角有无数个,它们的度数都相等。等弧是指同一个圆内能重合的弧或等圆中能重合的弧。(2)“同弧或等弧”改为“同弧弦或等弦”结论就不成立了,因为一条弦所对的圆周角有两类,它们一般不相等。知识点七:圆内接多边形 1、圆的内接四边形性质:圆的内接四边形的对角互补,外角等于它的内对角。 即:在中, 四边形是内接四边形 第二节 点和圆、直线和圆的位置关系知识点一:圆的确定1、 过一点作圆:只要以点A外的任意一点为圆心,以这一点与点A的距离为半径作圆就可以 作出,这样的

7、圆有无数个。 2、过两点作圆:经过两个点A,B作圆,只要以线段AB垂直平分线上任意一点为圆心,以这一点与点A或点B的距离为半径作圆就可以,这样有圆也有无数个。3、过不在同一直线上的三点作圆:过不在同一直线上的三点A、B、C作圆,圆心到这三个点的距离相等,因此,圆心在线段AB,BC的垂直平分线的交点O处,以O为圆心,以OA(或OB,OC)为半径可作出经过A、B、C三点的圆,这样的圆有且只有一个。4、 要想过四点作圆,应先作出经过不在同一条直线上的三点的圆,如果第四到圆心的距离等于半径,则第四个点在圆上,否则不在圆上。方法归纳:确定一个圆的圆心的方法,只需作出此圆任意两条弦的垂直平分线,其交点就是

8、圆心。知识点二:三角形的外接圆1、 三角形的外接圆:经过三角形三个项点可以作一个圆,2、 这个圆叫做三角形的外接圆。3、 三角形的外心:三角形外接圆的圆心是三角形三条边的垂直平分线的交点,叫做这个三角形的外心,如图:是ABC的外接圆,点O是ABC的外心。(1)三角形的外心到三角形三个顶点的距离相等,等于外接圆的半径。(2)一个三角形有且只有一个外接圆,而一个圆却有无数个内接三角形。 (3)三角形外心的位置:锐角三角形的外心在三角形内部;钝角三角形的外心在三角形外部;直角三角形的外心是斜边中点。 知识点三:反证法:(1)假设命题的结论不成立(2)从这个假设出发,经过推理论证,得出矛盾;(3)由矛

9、盾判定假设不正确,从而肯定原命题的结论正确。知识点四:直线和圆的位置关系 1、直线与圆相离 无交点; 2、直线与圆相切 有一个交点; 3、直线与圆相交 有两个交点;知识点五:切线的性质与判定定理 1、切线的判定定理:过半径外端且垂直于半径的直线是圆的切线; (1)两个条件:过半径外端且垂直半径,二者缺一不可 即:且过半径外端 是的切线 (2)切线判定方法:(1)数量关系:若圆心到直线的距离 等于半径,则直线是圆的切线。 (2)切线的判定定理:经过半径外端 且垂直于这条半径的直线是圆的切线。 (提示:在判定切线时,往往需要添加辅助线。) 2、切线性质定理:圆的切线垂直于过切点的半径(如上图) 推

10、论1:过圆心垂直于切线的直线必过切点。 推论2:过切点垂直于切线的直线必过圆心。 以上三个定理及推论也称二推一定理: 即:过圆心;过切点;垂直切线,三个条件中知道其中两个条件就能推出最后一个。知识点六:切线长定理 切线长定理: 从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角。 即:、是的两条切线 ,平分知识点七:三角形的内切圆与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心。 三角形的外接圆与内切圆以及外心与内心的对比图形的名称ABC的名称圆心O的确定“心”的性质“心”的位置ABC的外接圆的内接三角形三角形三边垂

11、直平分线的交点到三角形的三个顶点的距离相等锐角三角形在三角形内,直角三角形在斜边中点处;钝角三角形在三角外ABC的内切圆的外切三角形三角形三条角平分线的交点到三角形三条边的距离相等一定在三角形内部第三节 正多边形和圆知识点一:正多边形的定义及其相关概念 各边相等,各角也相等的多边形叫做正多边形。 我们把一个正多边形的外接圆的圆心叫做这个正多边形的中心。外接圆的半径叫做这个正多边形的半径,正多边形的每一边所对的圆心角叫做正多边形的中心角。正多边形的中心到正多边形一边的距离叫做正多边形的边心距。知识点二:与正多边形的有关计算(1) 正边形的每个内角为(2) 正边形的每个中心角为(3) 正边形的每个

12、外角为 (4) 正边形的半径、边心距、边长之间的关系为(5) 正边形的边长、边心距、周长,面积之间的关系为,知识点三:正多边形与圆的关系 (1)把圆分成()等份,依次连接各分点所得的多边形就是这个圆的内接正边形;经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正边形. (2)任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆。知识点四:正多边形的性质1、正多边形的各边相等,各角相等。2、正多边形都是轴对称图形,几边形就有几条对称轴,边数为偶数的正多边形也是中收对称图形。3、正边形的半径和边心距把正边形分成个全等的直角三角形。注意:正多边形都有一个外接圆,而圆有无数个内接

13、正多边形。第四节 弧长和扇形面积知识点一:弧长公式: 在半径为R的圆中,因为360 的圆心角所对的弧长就是圆周长,所以1的圆心角所对的弧长是,即,于是的圆心角所对的弧长为注意:在弧长公式中,和180都不带单位“度”。知识点二:扇形面积公式: (其中为扇形的弧长,R为半径) 在半径为R的圆中,因为360 的圆心角所对的扇形面积,所以圆心角是1的扇形面积是,于是圆心角为的扇形面积是知识点三:圆锥的有关概念1、圆锥的母线:连接圆锥顶点和底面圆周上任意一点的线段叫做圆锥的母线,如图,线段PA、PB是圆锥的两条母线。2、 圆锥的侧面积和全面积 如图,设圆锥的底成圆的半径为,母线长为,那么这个这个扇形的半径为,扇形的弧长为,因此 圆锥的侧面积公式: 圆锥的全面积公式:注意:在计算圆锥的侧面积时,要注意各元素之间的对应关系,千万不要错认为圆锥底面圆的半径等于扇形半径或把母线当成扇形有弧长。 圆和圆的位置关系

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|