1、第三章第三章 点、直线、平面的投影点、直线、平面的投影第一节第一节 点的投影点的投影点在两投影面体系中的投影HB B2 2B B1 1A Aba构成:立体构成:立体面面边边点点讲解顺序:点讲解顺序:点线线面面体体点的单面投影:点的单面投影:不能唯一确定空间点不能唯一确定空间点 一一 两面投影体系两面投影体系OXH HV VH与与V 相交相交OX投影投影轴轴水平投影面水平投影面 H 正立投影面正立投影面 V垂垂直直相相交交3一 点的两面投影点的两面投影二二 点的两面投影点的两面投影VHO OAaaX正面投影正面投影水平投影水平投影aX aoxax a点的投影特性点的投影特性:1.a a 的连线的
2、连线 OX OX 轴轴 2.2.a aX=Aa a aX=Aa 4(1)点的两投影连线垂直于投影轴,即 aaox;(2)点的投影到投影轴的距离,等于该 点到相邻投影面的距离,即:aax=Aa aax=Aa用两面投影是否均能用两面投影是否均能唯一确定唯一确定空间形体?空间形体?不能不能OXHVXO5VHOAa,aX正面投影正面投影水平投影水平投影一一 三面投影体系三面投影体系WYZa侧面投影侧面投影二 点的三面投影点的三面投影水平投影面水平投影面 H 正立投影面正立投影面 V侧立投影面侧立投影面W垂垂直直相相交交H与V 相交OX投影轴H与W相交OY投影轴V与W相交OZ投影轴67 aaa二二 点的
3、三面投影点的三面投影oxzyHyW45 垂直关系垂直关系,a aOXa,a,OZ 相等关系相等关系axaz aaxa,azayay投影特性:投影特性:1.aaz=aay=x aaz=aax=y aax=aa y=z 三投影面体系中点的投影规律2.aa ox aa ozHVXZYWOayaxazxyzaaaHa aa VWXOZYWYHaxayazay点在三投影面体系中的投影XYHYWZOaaa规定:空间点A用大写字母表示,在H面的投影a,在V面的投影用a,在W面的投影用a表示。aVHWXYHYW ZaaO例题例题1 已知点已知点A的正面与侧面投影,求点的正面与侧面投影,求点A的水平投影。的水平
4、投影。XZYWYHOa a a已知点已知点 A的正面投影和侧面投影的正面投影和侧面投影,求其水平投影。求其水平投影。注注:这是这是二求三二求三问题的基础。问题的基础。a8xzOyWyHaa例题例题2OAaaXYZa9三 点的投影与直角坐标的关系点的投影与直角坐标的关系投影面投影面坐标面坐标面投影轴投影轴坐标轴坐标轴轴的交点轴的交点O坐标原点坐标原点xzy Aa=Xa Aa=Ya Aa =Za距离的关系:距离的关系:投影投影坐标坐标立体图立体图wXOZYwaXHYHYaaaaaZYa例题例题3已知点已知点A A的坐标的坐标(20(20,10 10,20)20),求的三面投影。,求的三面投影。沿轴
5、准确量取X,Y,Z单位为mmyWyHzxoa10已知已知 A(35,10,25),作出其三面投影图。),作出其三面投影图。10mm351025aa注注:一个投影点反映两个坐标。一个投影点反映两个坐标。两个投影点确定一个空间点。两个投影点确定一个空间点。例题例题3XYZ12aCc例题例题4 已知已知A、C 两点的投影图,作出其立体图,并判别各两点的投影图,作出其立体图,并判别各点的空间位置。点的空间位置。aaccAX轴Y轴aac cyWyHzxaA位于位于C位于位于特殊点的投影HVOXb bc cHVOXCcca bBb Aaa aYZOX13四四 两两 点点 的的 投投 影影VWHA左左右右上
6、上下下前前后后一一 两点的相对位置关系两点的相对位置关系XOZY 两点的相对位置两点中两点中X 值大的点值大的点 在左在左两点中两点中Y 值大的点值大的点 在前在前 两点中两点中Z 值大的点值大的点 在上在上a a ab b bXZYWYHOaa ab bb BA14二二 重影点的概念重影点的概念A与与B 对对H面重影面重影由由V投影投影判断高低判断高低不可见投影点不可见投影点的标记加括号的标记加括号HAB a(b)baXO a(b)XOababa(b)c(d)dcacbd重影点的可见性判断左遮右左遮右3、若两点的侧面投影重合,可从正投影或水平投影判别,x坐标值大的点为可见(同学自己分析)。将
7、不可见点的投影加上括号来表示,如(b)(d)。前遮后前遮后2、若两点的正面投影重合,可从水平投影判别其可见性,y坐标值大的点为可见(点C在前)。上遮下上遮下1、若两点的水平投影重合,可从正面投影判别其可见性,z坐标值大的点为可见(点A在上)。例题例题5 已知点的坐标值为:A(20,10,15)和 B(0,15,20)求它们的三面投影图。解:(1)量取坐标值;XOYHYWZaaabbb(2)作点的投影。bbc cxyHywoaaz例题例题6 已知各点的两面投影,求作其第三投影,并判断点对投影面的相对位置。点A的三个坐标值均不为0,A为一般位置。点B的Z坐标为0,故点B为H面上的点。点C的x、y坐
8、标为0,故点C为z轴上的点。abc例题例题7 已知点D 的三面投影,点C在点D的正前方15mm,求作点C的三面投影,并判别其投影的可见性。解:由已知条件知:XC=XDZC=ZD YC-YD=15mm因为点C、D在V面上的投影重影。c cc又因为YC YD所以C的V面投影为可见点,则D的V面投影为不可见点。dYWYHOXZdd()例题例题8 已知A点在B点之前5毫米,之上9毫米,之右8毫米,求A点的投影。a a aXZYWYHOb bb 985ZYXObcaBAC11 已知已知A、B、C 三点的投影图,作出其立体图,并判三点的投影图,作出其立体图,并判别各点的空间位置。别各点的空间位置。空间空间
9、H面面V面面cababcyWyHzxA位于位于B位于位于C位于位于acbacbbaac例题例题9直线的投影直线的投影直线上的点直线上的点各种位置直线的投影特性各种位置直线的投影特性线段的实长及倾角线段的实长及倾角第二节第二节 直线的投影直线的投影2 一 直线的投影直线的投影直线的投影特性直线的投影特性显实显实积聚积聚类似类似1.1.直线平行于投影面,其投影反映实长。2.2.直线垂直于投影面,其投影积聚成点。3.3.直线倾斜于投影面,其投影长度缩短。3直线的投影图直线的投影图b,a,abb,a,xzOyWyH作图:1.1.作出直线上两作出直线上两点的投影点的投影2.2.用直线分别连用直线分别连接
10、其各同面投影。接其各同面投影。直线上的点具有两个特性:1 从属性 若点在直线上,则点的各个投影必在直线的各同面投影上。2 定比性 属于线段上的点分割线段之比等于其投影之比。利用这一特性,在不作侧面投影的情况下,可以在侧平线上找点或判断已知点是否在侧平线上。例题2 例题3 例题4 二二 直线上的点直线上的点ABbbaaXOccCc10b,aefbf,e,a,例例1E点在点在AB直线上直线上F点不在点不在AB直线上直线上判断判断 E、F点是不是在直线点是不是在直线AB上。上。试判断试判断K点是否在直线点是否在直线EF上。f eefkkXOYZVfef eefEFKkkk例例2XO直接判断直接判断例
11、例3K点不在直线上点不在直线上1,k,2,1,1k22,k,k判断判断K点是否在直线上。点是否在直线上。OXb Xa abcc 例题4 已知线段AB的投影图,试将AB分成 2:1 两段,求分点C 的投影。例题5 已知点C在线段AB上,求点C的正面投影。bXabaccaccbXOABbbaacCcHV已知K点在直线AB上,试求作K点的H面投影。ababXO例例64三、直线与投影面的相对位置三、直线与投影面的相对位置1.特殊位置直线特殊位置直线投影面的平行线:平行于投影面的平行线:平行于一个一个投影面的直线投影面的直线投影面的垂直线:垂直于投影面的垂直线:垂直于一个一个投影面的直线投影面的直线2.
12、一般位置直线一般位置直线 一般位置直线一般位置直线与各个投影面均倾斜:其投影与各个投影面均倾斜:其投影均小于实长。均小于实长。H:水平线:水平线 V:正平线:正平线 W:侧平线:侧平线H:铅垂线铅垂线V:正垂线正垂线W:侧垂线侧垂线三三 投影面各种位置直线的投影特性投影面各种位置直线的投影特性 投影面平行线投影面平行线 正平线正平线/面面水平线水平线/面面侧平线侧平线/面面平行于一个投影面 倾斜于另外两个投影面。平行线分三种:水平线水平线(/面、倾斜和面)面、倾斜和面)XZYOaababb Xa b ab baOzYHYWAB投影特性:1、正面和侧面投影比实长短,正面和侧面投影比实长短,a b
13、 OX;a b OYW 2、ab=AB 反映实长,倾斜于反映实长,倾斜于OXOX轴,轴,反映反映、角。角。XZYO正平线(/面、倾斜和面)aababbXabab baOZYHYWAB 投影特性:1 1、水平和侧面投影比实长短,、水平和侧面投影比实长短,ab ab OX OX;a a b b OZOZ 2 2、a a b b=AB AB 反映实长反映实长,倾斜于倾斜于OXOX轴,反映轴,反映、角角XZYO面侧平线(面侧平线(/面、倾斜和)面、倾斜和)XZa b bbaOYHYWaaa b a bbAB投影特性:1、正面和水平投影比实长短,正面和水平投影比实长短,a b OZ;ab OYH 2、a
14、 b =AB 反映实长反映实长,倾斜于倾斜于OZ轴,轴,反映反映 、角角投影面垂直线投影面垂直线侧垂线侧垂线面面 正垂线正垂线面面铅垂线铅垂线面面垂直于一个投影面垂直于一个投影面 平行于另外两个投影面。平行于另外两个投影面。垂直线分垂直线分三种:三种:OXZYb a(b)a abZb Xa ba(b)OYHYWa投影特性:1、水平投影、水平投影 a b 积聚积聚 成一点成一点 2、a b /OZ ;a b /OZ;a bOX ;a b OY 3、a b =a b =AB 反映实长反映实长铅垂线(铅垂线(面、面、/面、面、/面)面)AB正垂线(正垂线(面、面、/面、面、/面)面)OXZYbaba
15、ba投影特性:1、正面投影正面投影a b 积聚积聚 成一点。成一点。2、ab/OY ;a b /OY;ab OX ;a b OZ 3、ab=a b =AB 反映实长反映实长。ABzXab baOYHYWab侧垂线(侧垂线(面、面、/面、面、/面)面)OXZYAB投影特性:1、侧面投影、侧面投影 a b 积聚积聚 成一点成一点 2、ab/OX ;a b /OX;ab OYH ;a b OZ 3、ab=a b =AB 反映实长反映实长。baababZXabbaOYHYWab从属于从属于V 面的直线面的直线ZXabaOYHYWabbOXZYABbbabaa从属于从属于V 投影面的铅垂线投影面的铅垂线
16、OXZYABba(b)aabZYWbXaba(b)OYHa 从属于从属于OX轴的直线轴的直线ZXabaOYHYWa(b)bOOXZYABbba(b)aa 一般位置直线倾斜于三个投影面倾斜于三个投影面的直线。的直线。直线与它的水平投直线与它的水平投影、正面投影、侧面投影、正面投影、侧面投影的夹角,分别称为该影的夹角,分别称为该直线对直线对投影面投影面、的倾角,用的倾角,用、表表示。示。OXZY一般位置直线的投影特性ABbbabaa投影特性:1、a b、a b、a b 均小于实长均小于实长 2、a b、a b、a b 均倾斜于投影轴均倾斜于投影轴 3、不反映、不反映 、实角实角与三个投影面都倾斜的
17、直线称为一般位置直线。ZXabaOYYabb 直角三角形法求解实长、倾角。1 求直线的实长及对水平投影面的夹角角2 求直线的实长及对正面投影面的夹角角3 求直线的实长及对侧面投影面的夹角角 一般位置线段的实长及其与投影面的夹角|zB-zA|ABABbbaaboXO1 求直线的实长及对水平投影面的夹角角XaabbABab|zB-zA|AB|zB-zA|ab|Z直角三角形法:直角三角形法:距距离离差差实长实长投影投影 :H 投影投影,Z,实长实长 :V 投影投影,Y,实长,实长 :W 投影投影,X,实长,实长基本作图:基本作图:倾角倾角XOababAB b0ABbbaaCXO2 求直线的实长及对正
18、面投影面的夹角 角|YA-YB|aXabbabABABab|YA-YB|YA-YB|AB|YA-YB|XZYO3 求直线的实长及对侧面投影面的夹角 角ABbbabaaZXabaOYHYWabb|XA-XB|XA-XB|试用直角三角形法确定直线试用直角三角形法确定直线AB的实长及对的实长及对投影面投影面V的倾角的倾角 。例题例题ababXO AB例题例题 已知线段已知线段AB30毫米及其投影毫米及其投影ab和和a,试求出,试求出ab。baab例题 已知 线段的实长AB,求它的水平投影。a|zB-zA|ab a b|yA-yB|ABABab|zB-zA|b Xa bABa第第3 3节节 两直线的相
19、对位置两直线的相对位置一、两直线平行一、两直线平行二、两直线相交二、两直线相交三、两直线交叉三、两直线交叉四、两直线垂直四、两直线垂直两直线的相对位置Vabdcaabbdcce(f)AAABBBDCCCDEF平行平行两直线两直线相交相交两直线两直线交叉交叉两直线两直线XOV一一 两直线平行两直线平行5 规则:若空间两直线平行,则它们的各同名投影平行。规则:若空间两直线平行,则它们的各同名投影平行。abcdb b a a c c d d ABDCb b a a d d c c bacda a b b c c d d 同向、同比例同向、同比例6不平行不平行判断空间两直线是否平行。判断空间两直线是否
20、平行。b b a a d d c c bacdXO平行平行c c d d c cd dg g h h h hg gXOYZVfef eefCDdccddc7EF 基本作图基本作图8过已知点过已知点A作直线作直线AB平行于已知直线平行于已知直线CD。b b a a c c d d cdabbXaabkcddckXBDACKbbaaccddkk二 相交两直线交点K的三面投影符合点的投影规律。10投影图投影图利用投影判两断利用投影判两断直线是否相交?直线是否相交?基本作图基本作图过已知点作直线与已知直线相交。过已知点作直线与已知直线相交。1112 如图所示,作一条与如图所示,作一条与V面相距面相距2
21、0mm并与已知直线并与已知直线 CD相交的直线相交的直线AB。ddkkaabbcc例:过C点作水平线CD与AB相交。先作CD的正面投影三三 交叉两直线交叉两直线空间既不平行又不相交的二直线为交叉直线空间既不平行又不相交的二直线为交叉直线。b b X Xa a a ab bc c d d d dc c1 11 1(2(2)2 2X XO OB BD DA AC Cb bb b a aa a c c c cd dd d 2 21 11 1(2(2)2 21 1交叉两直线的同面投影可能相交,但不符合空间点的投影规律。aabbccddc c d d c cd dg g h h h hg gXOYZVf
22、ef eefCDdccddc7EF判断交叉两直线重影点的可见性 X XO OB BD DA AC Cb bb b a aa a c c c cd dd d(3(3)4)4 1(2)1(2)4 43 33 34 41 1 2 2 1 12 2 判断重影点的可见性时,需要看重影点在另一投影面上的投影,坐标值大的点投影可见,反之不可见,不可见点的投影加括号表示。前遮后、上遮前遮后、上遮下、左遮右下、左遮右上遮下前遮后aabbccdd 交叉两直线投影的交点并不是空间两直线真正的交点,而是两直线上相应点投影的重影点。11223344()()基本作图基本作图过已知点作直线与已知直线交叉。过已知点作直线与已
23、知直线交叉。15能否过A点随意作线呢?答案有多少个?无数个。例题 判断两直线的相对位置dacboYWYHzXaacddcbb例题 判断两直线的相对位置baacddcbX11d1c1例:判断两直线的相对位置。交点的连线垂直于OX,且两直线为一般位置直线,由两面投影可判断为相交两线。ab与cd在一直线上,而abcd,两直线平行。CD为侧平线,利用点分割线段成比例进行判断。为交叉两直线。OXaabbccddOXaabbccddOXaabbccddEmk 例:已知:两直线AB、CD的投影及点M的水平投影m,试作一直线MNCD并与直线AB相交于N点。nnm作图:过m作mncd,并与ab交于n;由n求出n
24、;过n作作nmcd,求得m。aabbccddmOX例题 判断两直线重影点的可见性bbcddcXaa3(4)34121(2)直角投影定理直角投影定理一、垂直相交的两直线的投影一、垂直相交的两直线的投影定理一:垂直相交的两直线,其中有一条直线平行于投定理一:垂直相交的两直线,其中有一条直线平行于投影面时,则两直线在该投影面上的投影仍反映直角。影面时,则两直线在该投影面上的投影仍反映直角。定理二:定理二:相交两直线在同一投影面上的投影反映直角,相交两直线在同一投影面上的投影反映直角,且有一条直线平行于该投影面,则空间两直线的夹角必是且有一条直线平行于该投影面,则空间两直线的夹角必是直角。直角。二、交
25、叉垂直的两直线的投影二、交叉垂直的两直线的投影定理三:相互垂直的两直线,其中有一条直线平行于投定理三:相互垂直的两直线,其中有一条直线平行于投影面时,则两直线在该投影面上的投影仍反映直角。影面时,则两直线在该投影面上的投影仍反映直角。定理四:两直线在同一投影面上的投影反映直角,且有定理四:两直线在同一投影面上的投影反映直角,且有一条直线平行于该投影面,则空间两直线的夹角必是直角。一条直线平行于该投影面,则空间两直线的夹角必是直角。一、垂直相交的两直线的投影AHBCacbcXbacbaAB垂直于AC,且AB平行于H面,则有ab ac二、交叉垂直的两直线的投影BHACcbaMNnmXbabamnn
26、mAB垂直于AC,且AB平行于H面,则有ab ac17 两垂直直线的判断两垂直直线的判断 关键是:关键是:两垂直直线中必须有一条直线是投影面的平行直线两垂直直线中必须有一条直线是投影面的平行直线。18 基本作图基本作图 过已知点,作直线垂直于已知直线。过已知点,作直线垂直于已知直线。答案有答案有多少个?多少个?ox例题 过点A 作EF 线段的垂线AB。bbaaOfeefXffcXcddee垂直相交垂直相交f例题 过点E 作线段AB、CD 的公垂线EF。fOcbaabXcddee19求作点到直线的距离。求作点到直线的距离。两平行直线的距离两平行直线的距离8投影面垂直线投影面垂直线b b a a
27、d d c c a(b)c(d)e e f f efabcda(b)c(d)ef9投影面平行线投影面平行线 两平行直线的距离两平行直线的距离实距实距 例6:已知:直线EF平行CD并与直线AB相交,F点在H面上。.求所缺的投影(书P74)aabbccddOXeeffKKABab|yA-yB|bc=BCb例题 作三角形ABC,ABC为直角,使BC在MN上,且BCAB=23。bcnmaaXmnc 掌握点与直线的投影特性,掌握点与直线的投影特性,尤其是尤其是特殊位置直线的投影特性。特殊位置直线的投影特性。点与直线及两直线相对位置的判断点与直线及两直线相对位置的判断方法及投影特性。方法及投影特性。点分割
28、直线成定比点分割直线成定比定比定理定比定理。小结:小结:第四节第四节 平面的投影平面的投影 平面的投影平面的投影一、平面的表示法一、平面的表示法 用几何元素表示平面不在同一直线上的三点。aabbccaabbcc一直线和线外一点。ccaabb相交两直线。bbaaccdd平行两直线。bbaacc任意平面形。平面的迹线表示法VHPPVPHPVPHVHQHQVQQW4二二 平面的投影特性平面的投影特性显实显实积聚积聚类似类似1.1.平面平行于投影面,其投影反映实形。2.2.平面垂直于投影面,其投影积聚成直线。3.3.平面倾斜于投影面,其投影为其类似形。5四四平面与投影面的相对位置平面与投影面的相对位置
29、1.特殊位置平面特殊位置平面投影面的平行面:平行于投影面的平行面:平行于一个一个投影面的平面投影面的平面投影面的垂平面:垂直于投影面的垂平面:垂直于一个一个投影面的平面投影面的平面2.一般位置平面一般位置平面 一般位置平面一般位置平面与各个投影面均倾斜:其投影与各个投影面均倾斜:其投影均小于实形,为平面的类似形。均小于实形,为平面的类似形。H:水平面:水平面 V:正平面:正平面 W:侧平面:侧平面H:铅垂面铅垂面V:正垂面正垂面W:侧垂面侧垂面投影面垂直面 垂直于一个投影面,与另两个投影面倾斜的平垂直于一个投影面,与另两个投影面倾斜的平面。投影面垂直面可分为三种:面。投影面垂直面可分为三种:垂
30、直于垂直于面的平面叫面的平面叫正垂面正垂面 垂直于垂直于面的平面叫面的平面叫铅垂面铅垂面 垂直于垂直于面的平面叫面的平面叫侧垂面侧垂面VXHYOZWPppp立立 体体 图图投投 影影 图图倾角 和投投 影影特特 性性(1 1)水平投影积聚成直线,并反映倾角)水平投影积聚成直线,并反映倾角和和(2 2)正面投影和侧面投影不反映实形)正面投影和侧面投影不反映实形,缩小的类似形缩小的类似形.ZXOpppwY铅垂面(面,倾斜、面)VWHPPH 铅垂面.ABCacbababbacccVWH铅垂面迹线表示法PHPPH投投 影影特特 性性立立 体体 图图投投 影影 图图(1 1)正面投影积聚成直线,并反映倾
31、角)正面投影积聚成直线,并反映倾角和和。(2 2)水平和侧面投影不反映实形,是缩小了的类似形。)水平和侧面投影不反映实形,是缩小了的类似形。XVZWYHOPppppXOZHYwYpp正垂面(面,倾斜、面)VWHQQV 正垂面.ababbacccAcCabBVWH正垂面的迹线表示法 QQVQVVWHSWS侧垂面(面,倾斜、面).CabABcabbbaaccc投投 影影特特 性性(1 1)侧面透影积聚成直线,并反映倾角)侧面透影积聚成直线,并反映倾角和和。(2 2)水平和正面投影不反映实形,是缩小了的类似形。)水平和正面投影不反映实形,是缩小了的类似形。侧垂面的迹线表示法VWHSHSZXOYSwY
32、投影面垂直面的投影特性:平面在所垂直的投影面上的投影积聚为直线;其余两投影面的投影为原形的类似形,但比实 形小;平面具有积聚性的投影与投影轴的夹角,分别 反映平面与相应投影面的倾角。投影面的平行面 平行于一个投影面,与另两个投影面垂直的平平行于一个投影面,与另两个投影面垂直的平面。投影面平行面可分为三种:面。投影面平行面可分为三种:平行于平行于面的平面叫面的平面叫正平面正平面 平行于平行于面的平面叫面的平面叫水平面水平面平行于平行于面的平面叫面的平面叫侧平面侧平面XVZWOP PHp pYp pp pZXpHYOppwY立立 体体 图图投投 影影 图图(1 1)水平投影反映实形)水平投影反映实
33、形(2 2)正面投影积聚为直线,且)正面投影积聚为直线,且/轴;侧面投影积轴;侧面投影积聚为直线,且聚为直线,且/OYw/OYw轴。轴。投投 影影特特 性性水平面(/面 V W面)VWH水平面CABabcbacabccabbbaaccVWH水平面的迹线表示法Pv正平面(/面 H W面)VWH.cabbacbcabacabcbcaCBA投投 影影特特 性性(1 1)正面投影反映真形。)正面投影反映真形。(2 2)水平投影)水平投影/OX/OX,侧面投影,侧面投影/OZ/OZ,分别积聚成直线。,分别积聚成直线。VWHphp正平面的迹线表示法侧平面(/面 V H 面)VWHabbbacccabcba
34、cabcCABa(1 1)侧平面投影反映真形。)侧平面投影反映真形。(2 2)正面投影)正面投影/OZ/OZ,水平投影,水平投影/OY/OYH H,分别积聚成直线。,分别积聚成直线。VWHRRHRV侧平面的迹线表示法投影面平形面的投影特性:平面在所平行的投影面上的投影反映 实形;其余两投影积聚为直线,并分别平 行于相应的投影轴。一般位置平面的投影特性:平面在三个投影面上的投影均不反一般位置平面的投影特性:平面在三个投影面上的投影均不反映实形,但为类似形。面积均比实形小。映实形,但为类似形。面积均比实形小。H HXV Va ab bc cY Yb ba ac cA AB BC CO OW Wa
35、ac cb bZ直观图直观图a aa aX Xc cHYb bb bc cOabZYwc投影图投影图一般位置平面a aa aX Xc cb bb bc cOwbacbcaabbaccabbbaaccc一框两线平行面,直线竖或横。一框两线平行面,直线竖或横。两框一线垂直面,斜线积聚成。两框一线垂直面,斜线积聚成。三框无线一般面,位置最分明。三框无线一般面,位置最分明。特点记忆三、平面上的点和直线三、平面上的点和直线几何条件1:若直线过平面上的两点,则此 直线必在 该平面内。几何条件2:若一直线过平面内的一点,且平行于 该平面上另一直线,则此直线在该平面内。几何条件3:若点在平面内,它必在平面内的
36、一 条直线上。平面上的点和直线若点在平面的一若点在平面的一直线上,则此点直线上,则此点必在该平面上。必在该平面上。若直线通过平面若直线通过平面上两个已知点,上两个已知点,则此直线必在该则此直线必在该平面上;平面上;或者直线通过平或者直线通过平面上一个已知点,面上一个已知点,且平行于平面上且平行于平面上的一直线,则此的一直线,则此直线也必在该平直线也必在该平面上。面上。取属于平面的点 取属于平面的点,要取自属于该平面的已知直线ABCDEabcabcddee 取属于平面的直线 ABCEDabcabcddeeFff例题 已知 ABC给定一平面,试判断点D是否属于该平面。ddabcabcee例题 已知
37、点D在 ABC上,试求点D的水平投影。ddabcabceed例题 已知点E在 ABC上,试求点E的正面投影。edabcabce例题:已知四边形ABCD的V面投影及AB、BC的H面投影,完成H面投影。解1OXaabbccddeeOXaabbccd解2eed例题 已知直线已知直线EF在平面在平面ABC上,求其未知投影。上,求其未知投影。caba,b,k,ess,c,fe,kf,16特性:特性:若直线上的一点在平面上且若直线上的一点在平面上且平行于平面上的一直线,则平行于平面上的一直线,则直线在平面上。直线在平面上。ACBEFcaba,b,c,feef 平面上的直线E E点在点在ABCABC平面上,
38、平面上,EF/BCEF/BCVHabbaSVHbaabAB 过一般位置直线总可作投影面的垂直面过一般位置直线AB作H面的垂直面PH过一般位置直线AB作V面的垂直面SvPPHSVAB(2)过一般位置直线作投影面的垂直面(迹线表示法)babaabSVQWPH2.平面上的投影面平行线 凡在平面上且平行于某一投影面的直线,称为平面上的投影面平行线。平面内的水平线直线在平面内,又平行于水平面的直线。平面内的正平线直线在平面内,又平行于正面的直线。平面内的侧平线直线在平面内,又平行于侧面的直线。VHP属于平面的水平线和正平线PVPHabcbac例题 已知 ABC给定一平面,试过点C作属于该平面的正平线,过
39、点A作属于该平面 的水平线。mnnm 例题:作ABC平面内的正平线,它距V面为8mm。OXaabbcc因为正平线的水平投影平行于OX,先作34OX,使其距V面8mm,再求出34。34834例题 已知点E 在ABC平面上,且点E距离H面15,距离V 面10,试求点E的投影。Xabcbacmnmnrsrs1015ee小结:小结:1.1.平面投影特性,尤其是平面投影特性,尤其是特殊位置平特殊位置平面面的投影特性;的投影特性;2.2.如何在平面上确定如何在平面上确定直线和点直线和点;138感谢亲观看此幻灯片,此课件部分内容来源于网络,感谢亲观看此幻灯片,此课件部分内容来源于网络,如有侵权请及时联系我们删除,谢谢配合!如有侵权请及时联系我们删除,谢谢配合!
侵权处理QQ:3464097650--上传资料QQ:3464097650
【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。