1、第三章 圆圆5 确定圆的条件1 1.过过一点可以作几条直线?一点可以作几条直线?v经过一点可以作无数条经过一点可以作无数条直线;直线;A2.2.过过几点可确定一条直线?几点可确定一条直线?n经过两点只能作一条直线.AB知识回顾知识回顾 过几点可以确定一个圆呢?思考:构成圆的基本要素有那些?两个条件:圆心半径探索新知探索新知经过经过一个已知点一个已知点A能确定一个圆吗能确定一个圆吗?A 经过一个已知点能作无数个圆你怎样画这个圆?O1O2O3O5O4经过经过两个已知点两个已知点A,B能确定一个圆吗能确定一个圆吗?AB 经过两个已知点经过两个已知点A,B能作能作无数无数个圆个圆 经过两个已知点经过两
2、个已知点A,B所作的圆的圆所作的圆的圆心有什么规律心有什么规律?它们它们的圆心都在线段的圆心都在线段AB的垂的垂直平分线直平分线上上.O1O2O3O4 作图:作图:过已知点过已知点A,B作圆作圆.n经过两点经过两点A,B的圆的的圆的圆心在线段圆心在线段AB的垂直平分线上的垂直平分线上.n以线段以线段AB的垂直平分线上的任的垂直平分线上的任意一点为意一点为圆心圆心,这点到这点到A或或B的距的距离为离为半径半径作圆作圆.ABO2O1O3O4经过三个已知点经过三个已知点A,B,C能确定一个圆吗?能确定一个圆吗?u假设经过A,B,C三点的 O存在.(1)圆心O到A,B,C三点距离 (填“相等”或”不相
3、等”).(2)O要经过AB,则圆心应在AB的 上;O要经过AC,则圆心应在AC的 上;(3)点O的位置应在 .点O到点A,B,C的距离 .NMFEOABC相等垂直平分线垂直平分线相等AB,AC垂直平分线的交点ABC过如下三点能不能作圆?为什么?u已知:不在同一直线上的三点已知:不在同一直线上的三点A,B,C.求作:求作:O使它经过点使它经过点A,B,C.作法:1.连接AB,作线段AB的垂直平分线MN;2.连接AC,作线段AC的垂直平分线EF,交MN于点O;3.以O为圆心,OB为半径作圆.所以 O就是所求作的圆.ONMFEABC定理:不在同一直线上不在同一直线上的三点确定一个的三点确定一个圆圆.
4、经过三角形各个顶点的圆叫作三角形的外接圆,外接圆的圆心叫作三角形的外心,这个三角形叫作圆的内接三角形.如图:如图:O是是ABC的外的外接圆,接圆,ABC是是 O的内的内接三角形,点接三角形,点O是是ABC的的外心外心.u外心是ABC三条边的垂直平分线的交点,u它到三角形的三个顶点的距离相等.CABO三角形与圆的位置关系三角形与圆的位置关系v分别作出锐角三角形分别作出锐角三角形,直角三角形直角三角形,钝角三角形的外钝角三角形的外接圆接圆,并说明与它们外心的位置情况并说明与它们外心的位置情况.n锐角三角形的外心位于三角形内n直角三角形的外心位于直角三角形斜边中点n注:(斜边长等于直径,圆的半径等于
5、斜边的一半)n钝角三角形的外心位于三角形外.ABCOABCCABOO如何将一个如图所示的破损的圆盘复原?如何将一个如图所示的破损的圆盘复原?方法方法:1.在在圆弧上任取三圆弧上任取三点点A,B,C.2.作作线段线段AB,BC的的垂直平分线垂直平分线,其交点其交点O即为即为圆心圆心.3.以以点点O为圆心,为圆心,OC长为半径作长为半径作圆圆.O即为所即为所求求.ABCO如如图,请找出图中圆的圆心,并写出图,请找出图中圆的圆心,并写出你找圆心的方法你找圆心的方法?ABCO 某市要建一个圆形公园,要求公园刚好把动物园某市要建一个圆形公园,要求公园刚好把动物园A,植物园,植物园B和人工湖和人工湖C包括
6、在内,又要使这个圆形包括在内,又要使这个圆形的面积最小,请你给出这个公园的的面积最小,请你给出这个公园的施工图施工图.(A,B,C不在同一直线上)不在同一直线上)植物园动物园人工湖 图中工具的图中工具的CD边所在直线恰好垂直平分边所在直线恰好垂直平分AB边,边,怎样用这个工具找出一个圆的怎样用这个工具找出一个圆的圆心圆心.CABD圆心圆心练一练练一练1.下列命题不正确的是A.过一点有无数个圆.B.过两点有无数个圆.C.弦是圆的一部分.D.过同一直线上三点不能作圆.2.三角形的外心具有的性质是A.到三边的距离相等.B.到三个顶点的距离相等.C.外心在三角形的外.D.外心在三角形内.3.等腰三角形
7、底边上的高与一腰的垂直平分线的交点是A.重心 B.垂心 C.外心 D.无法确定.随堂练习随堂练习4.4.判断判断:(1 1)经过)经过三点一定可以作三点一定可以作圆圆.()(2 2)三角形)三角形的外心就是这个三角形两边垂直平分线的外心就是这个三角形两边垂直平分线的的交点交点.()(3 3)三角形)三角形的外心到三边的距离的外心到三边的距离相等相等.()(4 4)等腰三角形)等腰三角形的外心一定在这个三角形的外心一定在这个三角形内内.()5.在在ABC中,中,BC=24 cm,外心,外心O到到BC的距离为的距离为6 cm,求,求ABC的外接圆半径的外接圆半径.【归纳】等边三角形的外接圆的半径等
8、于边长的()倍OBCA思考:思考:任意四个点是不是可以作一个圆?任意四个点是不是可以作一个圆?请举例说明请举例说明.不一定1.四点在一条直线上不能作圆;3.四点中任意三点不在一条直线可能作圆也可能作不出一个圆.ABCDABCDABCDABCD2.三点在同一直线上,另一点不在这条直线上不能作圆;(1)只有确定了圆心和圆的半径,这个圆的位置)只有确定了圆心和圆的半径,这个圆的位置和大小才唯一和大小才唯一确定确定.(2)经过一个已知点能作无数个圆!)经过一个已知点能作无数个圆!(3)经过两个已知点)经过两个已知点A,B能作无数个圆!这些圆能作无数个圆!这些圆的圆心在线段的圆心在线段AB的垂直平分线的垂直平分线上上.(4)不在同一直线上的三个点确定一个)不在同一直线上的三个点确定一个圆圆.(5)外接圆,外心的)外接圆,外心的概念概念.课堂小结课堂小结
侵权处理QQ:3464097650--上传资料QQ:3464097650
【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。