ImageVerifierCode 换一换
格式:PPTX , 页数:39 ,大小:1.09MB ,
文档编号:4684111      下载积分:25 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-4684111.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(晟晟文业)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(人教版《相似三角形应用举例》教学课件.pptx)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

人教版《相似三角形应用举例》教学课件.pptx

1、知识知识回顾回顾问题问题探究探究课堂课堂小结小结1.三角形相似的判定方法:(1)定义法:三个对应角相等,三条对应边成比例的两个三角形相似。(2)平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似;(3)判定定理1(边边边):三边对应成比例,两三角形相似;(4)判定定理2(边角边):两边对应成比例且夹角相等,两三角形相似;(5)判定定理3(角角):两角对应相等,两三角形相似;(6)直角三角形相似的判定定理(HL):斜边和一条直角边成比例的两个直角三角形相似。知识知识回顾回顾问题问题探究探究课堂课堂小结小结2.相似三角形的性质:(1)相似三角形对应角相等、

2、对应边成比例。(2)相似三角形对应边上的高线之比、对应边上中线之比、对应角平分线之比等于相似比.相似三角形对应线段之比等于相似比。(3)相似三角形的周长之比等于相似比。(4)相似三角形的面积之比等于相似比的平方。知识知识回顾回顾问题问题探究探究课堂课堂小结小结探究利用三角形相似测量物高 据史料记载,古希腊数学家、天文学家泰勒斯曾经利用相似三角形的原理,在金字塔影子的顶部立一根木杆,借助太阳光线构成的两个相似三角形来测量金字塔的高度。活动1探究一:如何测量不能到达顶部的物体的高度?探究一:如何测量不能到达顶部的物体的高度?小组合作:自学课本第39页,例题4-测量金字塔高度问题。知识知识回顾回顾问

3、题问题探究探究课堂课堂小结小结探究利用三角形相似测量物高 例:如图,如果木杆EF长2m,它的影长FD为3m,测得OA为201m,求金字塔的高度BO。活动1探究一:如何测量不能到达顶部的物体的高度?探究一:如何测量不能到达顶部的物体的高度?问题:1、本题中是利用什么构造相似三角形的?2、本题的突破点在哪里?3、如何测量旗杆的高度?(设计出你的测量方案,画出图形 与同伴交流)4、你发现了什么规律?怎样测出OA的长?俯角:视线在水平线以下,视线与水平线的夹角。即,PQ=90。(5)判定定理3(角角):两角对应相等,两三角形相似;(1)相似三角形对应角相等、对应边成比例。三角形相似的判定方法:当时,y

4、=-2x=-3,即B点(,-3);或,探究四:如何解相似三角形与函数的综合应用?探究四:如何解相似三角形与函数的综合应用?(2)相似三角形对应边上的高线之比、对应边上中线之比、对应角平分线之比等于相似比.盲区:眼睛看不见的区域叫盲区。合作探究,相似三角形与函数的综合应用解:(1)设直线AD的解析式为y=kx+b,将A(,),D(0,1)代入得:,解得:所以AB=AE+BE=1.由此可知,如果观察者继续前进,即他与左边的树的距离小于m时,由于这棵树的遮挡,右边树的顶端点C在观察者的盲区之内,观察者看不到它。点拨:解答此类问题时,首先要把实际问题转化为数学问题。若DC:PC=OC:OD=1:2,则

5、P(,)探究二:如何测量不能直接到达的两点间的距离?探究利用三角形相似测量物高解:PQR=PST=90,P=P,(2)相似三角形对应边上的高线之比、对应边上中线之比、对应角平分线之比等于相似比.(2)平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似;知识知识回顾回顾问题问题探究探究课堂课堂小结小结探究利用三角形相似测量物高 例:如图,如果木杆EF长2m,它的影长FD为3m,测得OA为201m,求金字塔的高度BO。活动1探究一:如何测量不能到达顶部的物体的高度?探究一:如何测量不能到达顶部的物体的高度?解:太阳光是平行线,因此BAO=EDF 又AOB=

6、DFE=90,ABODEF ,答:金字塔的高度BO为134m。怎样测出OA的长?FDOAEFBO13432201FDEFOABO知识知识回顾回顾问题问题探究探究课堂课堂小结小结探究利用三角形相似测量物高你想到了吗?还可以有其他方法测量吗?活动1探究一:如何测量不能到达顶部的物体的高度?探究一:如何测量不能到达顶部的物体的高度?利用平面镜也可测高ABOAEF BO OAEFFAOA EFBOFA知识知识回顾回顾问题问题探究探究课堂课堂小结小结探究利用三角形相似测量物高你想到了吗?还可以有其他方法测量吗?活动1探究一:如何测量不能到达顶部的物体的高度?探究一:如何测量不能到达顶部的物体的高度?利用

7、平面镜也可测高测高的方法:测量不能到达顶部的物体的高度,通常用“在同一时刻物高与影长成正比例”的原理解决。甲物高:乙物高=甲影长:乙影长知识知识回顾回顾问题问题探究探究课堂课堂小结小结探究利用三角形相似测量物高你想到了吗?还可以有其他方法测量吗?活动1探究一:如何测量不能到达顶部的物体的高度?探究一:如何测量不能到达顶部的物体的高度?利用平面镜也可测高 利用三角形相似可以解决一些不能直接测量的物体的长度的问题一般图形:知识知识回顾回顾问题问题探究探究课堂课堂小结小结例题讲解活动2探究一:如何测量不能到达顶部的物体的高度?探究一:如何测量不能到达顶部的物体的高度?例1:如图,某一时刻一根2m长的

8、竹竿EF的影长GE为,此时,小红测得一棵被风吹斜的柏树与地面成30角,树顶端B在地面上的影子点D与B到垂直地面的落点C的距离是,求树AB的长。分析:先利用BDCFGE得到 ,可计算出BC6m,然后在RtABC中利用含30度的直角三角形三边的关系即可得到AB的长。23.6 1.2BC知识知识回顾回顾问题问题探究探究课堂课堂小结小结例题讲解活动2探究一:如何测量不能到达顶部的物体的高度?探究一:如何测量不能到达顶部的物体的高度?例1:如图,某一时刻一根2m长的竹竿EF的影长GE为,此时,小红测得一棵被风吹斜的柏树与地面成30角,树顶端B在地面上的影子点D与B到垂直地面的落点C的距离是,求树AB的长

9、。解:如图,CD3.6m,BDCFGE,即 ,BC6m在RtABC中,A30,AB2BC12m,即树长AB是12m。BC EFCD GE23.6 1.2BC 点拨:解答此类问题时,首先要把实际问题转化为数学问题。利用相似三角形对应边成比例建立相等关系求解。知识知识回顾回顾问题问题探究探究课堂课堂小结小结例题讲解活动2探究一:如何测量不能到达顶部的物体的高度?探究一:如何测量不能到达顶部的物体的高度?例2:小明想利用树影测量树高,他在某一时刻测得长为1m的竹竿影长,但当他马上测量树影时,因树靠近一栋建筑物,影子不全落在地面上,有一部分影子在墙上,如图,他先测得留在墙上的影高,又测得地面部分的影长

10、,他求得的树高是多少?解:如图,过点C作CEAB于点E,因此BE=CD=1.2m,CE=BD=2.7m,由 得AE=3 所以AB=AE+BE=1.2+3=4.2(m)答:这棵树的高为4.2m 12.7 0.9AEE知识知识回顾回顾问题问题探究探究课堂课堂小结小结探究利用三角形相似测量距离(或宽度)例:如图,为了估算河的宽度,我们可以在河对岸选定一个目标P,在近岸取点Q和S,使点P、Q、S共线且直线PS与河垂直,接着在过点S且与PS垂直的直线a上选择适当的点T,确定PT与过点Q且垂直PS的直线b的交R。如果测得QS=45m,ST=90m,QR=60m,求河的宽度PQ。活动1探究二:如何测量不能直

11、接到达的两点间的距探究二:如何测量不能直接到达的两点间的距离?离?1.本题中是如何构造相似三角形来解决问题的?2.你还可以用什么方法来测量河的宽度?(6)直角三角形相似的判定定理(HL):斜边和一条直角边成比例的两个直角三角形相似。(2)直线AD与x轴交于点B,若点E是直线AD上一动点(不与点B重合),当BOD与BCE相似时,求点E的坐标。,即,BC6m因此BE=CD=1.解:太阳光是平行线,因此BAO=EDF三角形相似的判定方法:例:如图,如果木杆EF长2m,它的影长FD为3m,测得OA为201m,求金字塔的高度BO。探究三:什么是视点、视角、盲区?它们是如何应用的?合作探究,相似三角形与函

12、数的综合应用探究利用三角形相似测量物高所以AB=AE+BE=1.合作探究,相似三角形与函数的综合应用1、相似三角形的应用主要有如下两个方面:三角形相似的判定方法:B(m,n)在y=上,即,BC6mPQRPST,(2)相似三角形对应边上的高线之比、对应边上中线之比、对应角平分线之比等于相似比.探究四:如何解相似三角形与函数的综合应用?A30,AB2BC12m,点拨:解答此类问题时,首先要把实际问题转化为数学问题。探究四:如何解相似三角形与函数的综合应用?知识知识回顾回顾问题问题探究探究课堂课堂小结小结探究利用三角形相似测量距离(或宽度)例:如图,为了估算河的宽度,我们可以在河对岸选定一个目标P,

13、在近岸取点Q和S,使点P、Q、S共线且直线PS与河垂直,接着在过点S且与PS垂直的直线a上选择适当的点T,确定PT与过点Q且垂直PS的直线b的交R,如果测得QS=45m,ST=90m,QR=60m,求河的宽度PQ。活动1探究二:如何测量不能直接到达的两点间的距探究二:如何测量不能直接到达的两点间的距离?离?解:PQR=PST=90,P=P,PQR PST,即 ,PQ=90。答:河的宽度PQ为90m。STQRQSPQPQ906045PQPQ知识知识回顾回顾问题问题探究探究课堂课堂小结小结探究利用三角形相似测量距离(或宽度)活动1探究二:如何测量不能直接到达的两点间的距探究二:如何测量不能直接到达

14、的两点间的距离?离?你想到了吗?还可以有其他方法测量吗?利用三角形相似测宽ABECDE EDBECDABEDBECDAB知识知识回顾回顾问题问题探究探究课堂课堂小结小结探究利用三角形相似测量距离(或宽度)活动1探究二:如何测量不能直接到达的两点间的距探究二:如何测量不能直接到达的两点间的距离?离?你想到了吗?还可以有其他方法测量吗?利用三角形相似测宽测距的方法:测量不能到达两点间的距离,常构造相似三角形求解。解相似三角形实际问题的一般步骤:(1)审题;(2)构建图形;(3)利用相似解决问题。知识知识回顾回顾问题问题探究探究课堂课堂小结小结例题讲解活动2探究二:如何测量不能直接到达的两点间的距探

15、究二:如何测量不能直接到达的两点间的距离?离?例:如图,已知零件的外径为a,要求它的厚度x,需先求出内孔的直径AB,现用一个交叉卡钳(两条尺长AC和BD相等)去量,若OA:OC=OB:OD=n,且量得CD=b,求厚度x。分析:如图,要想求厚度x,根据条件可知,首先得求出内孔直径AB,而在图中可构造出相似形,通过相似形的性质,从而求出AB的长度。答:河的宽度PQ为90m。探究二:如何测量不能直接到达的两点间的距离?(2)已知点P是二次函数y=x2+3x图象在y轴分析:(1)把A点坐标代入y=可得k的值,进而得到函数解析式;例:如图,如果木杆EF长2m,它的影长FD为3m,测得OA为201m,求金

16、字塔的高度BO。仰角:视线在水平线以上,视线与水平线的夹角。盲区:眼睛看不见的区域叫盲区。当时,y=-2x=-3,即B点(,-3);怎样测出OA的长?利用“在同一时刻物高与影长成正比例”测物高要注意:所以AB=AE+BE=1.探究一:如何测量不能到达顶部的物体的高度?(1)由于太阳在不停地移动,影子的长也随着太阳的移动而发生变化。探究二:如何测量不能直接到达的两点间的距离?分析:(1)把A点坐标代入y=可得k的值,进而得到函数解析式;探究二:如何测量不能直接到达的两点间的距离?,而,利用平面镜也可测高即解:(1)设直线AD的解析式为y=kx+b,将A(,),D(0,1)代入得:,解得:例1:如

17、图,在平面直角坐标系xOy中,直线y=x+3与x轴交于点C,与直线AD交于点A(,),点D的坐标为(0,1)三角形相似的判定方法:知识知识回顾回顾问题问题探究探究课堂课堂小结小结例题讲解活动2探究二:如何测量不能直接到达的两点间的距探究二:如何测量不能直接到达的两点间的距离?离?例:如图,已知零件的外径为a,要求它的厚度x,需先求出内孔的直径AB,现用一个交叉卡钳(两条尺长AC和BD相等)去量,若OA:OC=OB:OD=n,且量得CD=b,求厚度x。点拨:利用三角形相似求线段长是常用方法。解:OA:OCOB:ODn且AOBCOD,AOBCOD OA:OCAB:CDn,又CDb,AB=CDnnb

18、,22a AB a nbx知识知识回顾回顾问题问题探究探究课堂课堂小结小结相关知识介绍视点:观察者眼睛的位置叫视点;视线:由视点出发的线叫视线;盲区:眼睛看不见的区域叫盲区。活动1探究三:什么是视点、视角、盲区?它们是如探究三:什么是视点、视角、盲区?它们是如何应用的?何应用的?知识知识回顾回顾问题问题探究探究课堂课堂小结小结相关知识介绍视角:视线与水平线的夹角。仰角:视线在水平线以上,视线与水平线的夹角。俯角:视线在水平线以下,视线与水平线的夹角。活动1探究三:什么是视点、视角、盲区?它们是如探究三:什么是视点、视角、盲区?它们是如何应用的?何应用的?知识知识回顾回顾问题问题探究探究课堂课堂

19、小结小结例题讲解 例:如图,左、右并排的两棵大树的高分别为AB=8m和CD=12m,两树底部的距离BD=5m,一个人估计自己眼睛距地面,她沿着正对这两棵树的一条水平直路l从左向右前进,当她与左边较低的树的距离小于多少时,就看不到右边较高的树的顶端C了?活动2探究三:什么是视点、视角、盲区?它们是如探究三:什么是视点、视角、盲区?它们是如何应用的?何应用的?分析:如图,设观察者眼睛的位置(视点)为点F(EF近似为人的身高),画出观察者的水平视线FG,它交AB、CD于点H、K,视线FA、FG的夹角AFH是观察点A的仰角。能看到C点。类似地,CFK是观察点C时的仰角,由于树的遮挡,区域和都在观察者看

20、不到的区域(盲区)之内。再往前走就根本看不到C点了。知识知识回顾回顾问题问题探究探究课堂课堂小结小结例题讲解解:如图,假设观察者从左向右走到点E时,她的眼睛的位置点F与两棵树的顶端A,C恰在一条直线上。ABl,CDl,ABCD AFHCFK 即 解得FH=8(m)由此可知,如果观察者继续前进,即他与左边的树的距离小于m时,由于这棵树的遮挡,右边树的顶端点C在观察者的盲区之内,观察者看不到它。活动2探究三:什么是视点、视角、盲区?它们是如探究三:什么是视点、视角、盲区?它们是如何应用的?何应用的?CKAHFKFH8 1.66.45 12 1.6 10.4FHFH 点拨:解实际问题关键是找出相似的

21、三角形,然后根据对应边的比相等列出方程,建立适当的数学模型来解决问题。知识知识回顾回顾问题问题探究探究课堂课堂小结小结合作探究,相似三角形与函数的综合应用1.相似三角形与一次函数活动1探究四:如何解相似三角形与函数的综合应用?探究四:如何解相似三角形与函数的综合应用?例1:如图,在平面直角坐标系xOy中,直线y=x+3与x轴交于点C,与直线AD交于点A(,),点D的坐标为(0,1)(1)求直线AD的解析式;(2)直线AD与x轴交于点B,若点E是直线AD上一动点(不与点B重合),当BOD与BCE相似时,求点E的坐标。4353 分析:(1)设直线AD的解析式为y=kx+b,用待定系数法将A(,),

22、D(0,1)的坐标代入即可;4353知识知识回顾回顾问题问题探究探究课堂课堂小结小结合作探究,相似三角形与函数的综合应用活动1探究四:如何解相似三角形与函数的综合应用?探究四:如何解相似三角形与函数的综合应用?例1:如图,在平面直角坐标系xOy中,直线y=x+3与x轴交于点C,与直线AD交于点A(,),点D的坐标为(0,1)(1)求直线AD的解析式;(2)直线AD与x轴交于点B,若点E是直线AD上一动点(不与点B重合),当BOD与BCE相似时,求点E的坐标。4353 分析:(2)由直线AD与x轴的交点为(2,0),得到OB=2,由点D的坐标为(0,1),得到OD=1,求得BC=5,根据相似三角

23、形的性质得到 或 ,代入数据即可得到结论。BDBOODBCBECEOBODBCCEEE解:(1)设直线AD的解析式为y=kx+b,将A(,),D(0,1)代入得:,解得:故直线AD的解析式为:y=x+1;(2)直线AD与x轴的交点为(2,0),OB=2,点D的坐标为(0,1),OD=1,y=x+3与x轴交于点C(3,0),OC=3,BC=5BOD与BCE相似,或 ,或 ,BE=2 ,CE=,或CE=,E(2,2),或(3,)。435345331k bb 121kb12BDBO ODBCBECEOBODBCCE5215BECE215CE555252知识知识回顾回顾问题问题探究探究课堂课堂小结小结

24、合作探究,相似三角形与函数的综合应用活动1探究四:如何解相似三角形与函数的综合应用?探究四:如何解相似三角形与函数的综合应用?点拨:本题考查了相似三角形的性质,待定系数法求函数的解析式,正确的作出图形是解题的关键。知识知识回顾回顾问题问题探究探究课堂课堂小结小结合作探究,相似三角形与函数的综合应用2.相似三角形与反比例函数活动1探究四:如何解相似三角形与函数的综合应用?探究四:如何解相似三角形与函数的综合应用?例2:如图,已知反比例函数y=(x0,k是常数)的图象经过点A(1,4),点B(m,n),其中m1,AMx轴,垂足为M,BNy轴,垂足为N,AM与BN的交点为C(1)写出反比例函数解析式

25、;(2)求证:ACBNOM;(3)若ACB与NOM的相似比为2,求出B点的坐标及AB所在直线的解析式。kx知识知识回顾回顾问题问题探究探究课堂课堂小结小结合作探究,相似三角形与函数的综合应用活动1探究四:如何解相似三角形与函数的综合应用?探究四:如何解相似三角形与函数的综合应用?分析:(1)把A点坐标代入y=可得k的值,进而得到函数解析式;(2)根据A、B两点坐标可得AC=4n,BC=m1,ON=n,OM=1,则 ,再根据反比例函数解析式可得 ,则 ,而 ,可得 ,再由ACB=NOM=90,可得ACBNOM;(3)根据ACB与NOM的相似比为2可得m1=2,进而得到m的值,然后可得B点坐标,再

26、利用待定系数法求出AB的解析式即可。kx4ACnNOn4mn1ACmON 11BCmM OACBCNO M O知识知识回顾回顾问题问题探究探究课堂课堂小结小结合作探究,相似三角形与函数的综合应用活动1探究四:如何解相似三角形与函数的综合应用?探究四:如何解相似三角形与函数的综合应用?解:(1)y=(x0,k是常数)的图象经过点A(1,4),k=4,反比例函数解析式为y=;(2)点A(1,4),点B(m,n),AC=4n,BC=m1,ON=n,OM=1,B(m,n)在y=上,而 ,ACB=NOM=90,ACBNOM;kx441ACnNOnn 4x1ACmON 4mn11BCmM O4xACBCN

27、O M O知识知识回顾回顾问题问题探究探究课堂课堂小结小结合作探究,相似三角形与函数的综合应用活动1探究四:如何解相似三角形与函数的综合应用?探究四:如何解相似三角形与函数的综合应用?解:(3)ACB与NOM的相似比为2,m1=2,m=3,B(3,),设AB所在直线解析式为y=kx+b,解得 ,解析式为4334k bk b 4341633yx43163kb 点拨:此题主要考查了反比例函数的综合应用,关键是掌握凡是函数图象经过的点,必然能使函数解析式左右相等。知识知识回顾回顾问题问题探究探究课堂课堂小结小结合作探究,相似三角形与函数的综合应用3.相似三角形与二次函数活动1探究四:如何解相似三角形

28、与函数的综合应用?探究四:如何解相似三角形与函数的综合应用?例3:如图,一次函数y=2x的图象与二次函数y=x2+3x图象的对称轴交于点B(1)写出点B的坐标_;(2)已知点P是二次函数y=x2+3x图象在y轴右侧部分上的一个动点,将直线y=2x沿y轴向上平移,分别交x轴、y轴于C、D两点。若以CD为直角边的PCD与OCD相似,求点P的坐标。知识知识回顾回顾问题问题探究探究课堂课堂小结小结合作探究,相似三角形与函数的综合应用活动1探究四:如何解相似三角形与函数的综合应用?探究四:如何解相似三角形与函数的综合应用?解:(1)抛物线y=-x2+3x的对称轴为 当 时,y=-2x=-3,即B点(,-

29、3);(2)设D(0,2a),则直线CD解析式为y=-2x+2a,可知C(a,0),即OC:OD=1:2,则OD=2a,OC=a,根据勾股定理可得:CD=。以CD为直角边的PCD与OCD相似,当CDP=90时,若PD:DC=OC:OD=1:2,则PD=设P的横坐标是x,则P点纵坐标是-x2+3x,根据题意得:解得:33212x 32x235a52a22222222253225532axxxaaaxxx a 1212xa知识知识回顾回顾问题问题探究探究课堂课堂小结小结合作探究,相似三角形与函数的综合应用活动1探究四:如何解相似三角形与函数的综合应用?探究四:如何解相似三角形与函数的综合应用?则P

30、的坐标是:(,),若DC:PD=OC:OD=1:2,同理可以求得P(2,2),当DCP=90时,若PC:DC=OC:OD=1:2,则P(,),若DC:PC=OC:OD=1:2,则P(,)故答案为:(2,2),(,),(,)、(,)。125411411161352625125411411161352625 点拨:本题考查了二次函数的综合运用。关键是利用平行线的解析式之间的关系,相似三角形的判定与性质,分类求解。1、相似三角形的应用主要有如下两个方面:(1)测高(不能直接使用皮尺或刻度尺量的)(2)测距(不能直接测量的两点间的距离)2、测高的方法 测量不能到达顶部的物体的高度,通常用“在同一时刻物

31、高与影长的比例”的原理解决。知识梳理知识知识回顾回顾问题问题探究探究课堂课堂小结小结3、测距的方法 测量不能到达两点间的距离,常构造相似三角形求解。4、解决实际问题时(如测高、测距),一般有以下步骤:审题;构建图形;利用相似解决问题。知识梳理知识知识回顾回顾问题问题探究探究课堂课堂小结小结重难点突破1.利用影长测量不能直接测量的物高的方法:利用同一时刻的太阳光线构造两个相似三角形,利用相似三角形对应边的比相等列出关于物高、物影、人高、人影的比例关系式,然后通过测量物影、人高、人影来计算出物高。知识知识回顾回顾问题问题探究探究课堂课堂小结小结重难点突破知识知识回顾回顾问题问题探究探究课堂课堂小结

32、小结2.利用“在同一时刻物高与影长成正比例”测物高要注意:(1)由于太阳在不停地移动,影子的长也随着太阳的移动而发生变化。因此,度量影子的长一定要在同一时刻下进行,否则就会影响结果的准确性。(2)太阳离我们非常远,因此可以把太阳光近似地看成平行光线。(3)此方法要求被测物体的底部可以到达,否则测不到被测物体的影长,从而计算不出物体的高。重难点突破3.测量不能直接到达的两点间的距离,关键是构造两个相似三角形,利用能测量的三角形的边长及相似三角形的性质求此距离。知识知识回顾回顾问题问题探究探究课堂课堂小结小结探究四:如何解相似三角形与函数的综合应用?分析:如图,设观察者眼睛的位置(视点)为点F(E

33、F近似为人的身高),画出观察者的水平视线FG,它交AB、CD于点H、K,视线FA、FG的夹角AFH是观察点A的仰角。例:如图,如果木杆EF长2m,它的影长FD为3m,测得OA为201m,求金字塔的高度BO。因此,度量影子的长一定要在同一时刻下进行,否则就会影响结果的准确性。解:如图,假设观察者从左向右走到点E时,她的眼睛的位置点F与两棵树的顶端A,C恰在一条直线上。盲区:眼睛看不见的区域叫盲区。由得AE=3(1)求直线AD的解析式;AFHCFK点拨:本题考查了相似三角形的性质,待定系数法求函数的解析式,正确的作出图形是解题的关键。探究一:如何测量不能到达顶部的物体的高度?A30,AB2BC12

34、m,点拨:解答此类问题时,首先要把实际问题转化为数学问题。探究利用三角形相似测量物高例1:如图,在平面直角坐标系xOy中,直线y=x+3与x轴交于点C,与直线AD交于点A(,),点D的坐标为(0,1)上平移,分别交x轴、y轴于C、D两点。探究利用三角形相似测量距离(或宽度)例:如图,如果木杆EF长2m,它的影长FD为3m,测得OA为201m,求金字塔的高度BO。例1:如图,某一时刻一根2m长的竹竿EF的影长GE为,此时,小红测得一棵被风吹斜的柏树与地面成30角,树顶端B在地面上的影子点D与B到垂直地面的落点C的距离是,求树AB的长。所以AB=AE+BE=1.(3)判定定理1(边边边):三边对应成比例,两三角形相似;探究利用三角形相似测量物高重难点突破知识知识回顾回顾问题问题探究探究课堂课堂小结小结4.利用相似三角形的知识对未知量(高度、宽度等)进行测量,一般要经历以下几个步骤:(1)利用平行线、标杆等构造相似三角形;(2)测量与表示未知量的线段相对应的边长,以及另外任意一组对应边的长度;(3)画出示意图,利用相似三角形的性质,列出以上包括未知量在内的四个量的比例式,解出未知量;(4)检验并得出答案。谢 谢

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|