ImageVerifierCode 换一换
格式:PPT , 页数:35 ,大小:146.65KB ,
文档编号:4687829      下载积分:25 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-4687829.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(晟晟文业)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(Breaking-the-O(n2)-Bit-Barrier-Scalable-Byzantine-Agreement-突破O(N2)位垒的可扩展的拜占庭协议课件.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

Breaking-the-O(n2)-Bit-Barrier-Scalable-Byzantine-Agreement-突破O(N2)位垒的可扩展的拜占庭协议课件.ppt

1、Breaking the O(n2)Bit Barrier:Scalable Byzantine Agreement with an Adaptive Adversary Valerie King Jared SaiaUniv.of VictoriaUniv.of New Mexico Canada USA Each proc.starts with a bit;Goal:All procs.decide the same bit,which must match at least one of their initial bits.t=#of bad procs.controlled by

2、malicious AdversaryByzantine agreement for large scale networksIf you could do it practically,you would!Why?Protecting against malicious attacks Organizing large communities of users Mediation in game theoryFundamental building blockOur Model Procs=1,2,n Message passing:A knows if it receives from B

3、 Synchronous Private random bits Private channels Adaptive adversary Resilience:t n(1/3-)Limit on#bits sent by good procs.:Bad procs can send any#.Our Model Procs=1,2,n Message passing:A knows if it receives from B Synchronous Private random bits Private channels Adaptive adversary Resilience:t n(1/

4、3-)Limit on#bits sent by good procs.:Bad procs can send any#.Our Model Procs=1,2,n Message passing:A knows if it receives from B Synchronous w/rushing adv.Private random bits Private channels Adaptive adversary Resilience:t n(1/3-)Limit on#bits sent by good procs.:Bad procs can send any#.Our ModelPr

5、ocs=1,2,nMessage passing:A knows if it receives from BSynchronous Private random bitsPrivate channelsAdaptive adversaryResilience:t n(1/3-)Limit on#bits sent by good procs.:Bad procs can send any#.Our ModelProcs=1,2,nMessage passing:A knows if it receives from BSynchronousPrivate random bits Private

6、 channelsAdaptive adversaryResilience:t n(1/3-)Limit on#bits sent by good procs.:Bad procs can send any#.Our ModelProcs=1,2,nMessage passing:A knows if it receives from BSynchronousPrivate random bitsPrivate channels Adaptive adversaryResilience:t n(1/3-)Limit on#bits sent by good procs.:Bad procs c

7、an send any#.Our ModelProcs=1,2,nMessage passing:A knows if it receives from BSynchronousPrivate random bitsPrivate channelsAdaptive adversary Resilience:t n(1/3-)Limit on#bits sent by good procs.:Bad procs can send any#.Our ModelProcs=1,2,nMessage passing:A knows if it receives from BSynchronousPri

8、vate random bitsPrivate channelsAdaptive adversaryResilience:t 0(Implication of Dolev Reischuk)Our resultsTheorem 1:(BA)For any consts.c,there is a const.d and a(1/3-)n resilient protocol which solves BA with prob.1-1/nc using(n1/2)bits per processor in O(logd n)roundsAlsoTheorem 2:(a.e.BA)For any c

9、onsts.c,there is a const.d and a(1/3-)-resilient protocol which brings 1-O(1/log n)fraction of good procs to agreemt with prob.1-1/nc using(1)bits per proc.in O(logd n)rounds Previous work An expected constant number of rounds suffice.(Feldman and Micali 1988)All previously known protocols use all-t

10、o-all communication KEY IDEA:The power of a short somewhat random stream S S=s1 s2 sk be short stream of numbers.Some a.e.global random numbers,some numbers fixed by an adversary which can see the preceding stream when choosing.-S can be generated w.h.p.Talk outlineI:Using S to get a.e.BAII Using S

11、to go from a.e.BA to BAIII Generating S Rabins BA with Global Coin GCtn/3 Set vote all procs.Maj-majority bit from others Fract 2/3 agree on bit then vote-Maj Else if GC=1 set vote-1;else set vote-0Scalable a.e.BA with a.e.Global Coin GCt 2/3+/2-using S instead of GC-a.e.BA whpFor i=1,k,generate bit

12、 si and run a.e.BA using si for a.e.global coinIt suffices that clog n bits of S are known a.e.and random II:Using S to go from a.e.BA to BA Idea:Query random set of procs to ask bit.Since almost all good procs agree,majority should give correct answer.Works if bad procs have communication bound But

13、 in our model,the adversary can flood all procs with queries!Use s to decide which queries to answer.II:Using S to go from a.e.BA to BALabels=1,.,n1/2 FOR each number s of S=Labelsk:Each proc.p picks(n1/2)random queries and sends label to proc.q answers only if label=s(and not overloaded)if 2/3 majo

14、rity of ps queries with the same label are returned and agree on v,then p decides v.IT SUFFICES TO HAVE AN a.e.AGREED upon S with a RANDOM subsequence!III Generating SSparse network Tree of robust supernodes of increasing size with links:procs in child-procs in parent node procs in parent node-leave

15、s of subtrees All procs.Supernodes and links generated usingaveraging samplers Arrays of rand.#sEach proc pi generates array Ai of rand#s and secret shares it with its leaf node.#s in arrays are revealed as needed to elect which remaining parts of arrays will be passed on to parent node.A1A2Feiges a

16、lg carried out in each node Each candidate picks a bin;winners=lightest bins contents 123456-Requires agreement on all bin choices.Elections of arrays in node We use scalable a.e.BA;bin numbers and S given by numbers from sequence of winning arrays of children.s1s2As array moves up,secret shares are

17、 split up among more procs on higher levels and erased from children so that adversary cannot learn a large fraction of arrays promoted to a higher level by taking over a small sets of processors on lower level.Secrets are revealed as needed:by reversing and duplicating communication down every path

18、,reassembling shares at every leaf of subtree.so that adversary cannot prevent secret from being exposed by blocking a single path.Leaves are sampled(det.)by procs in subtree root to learn secret valueGeneration of a short SOnly a polylog number of arrays are left at each of the polylog children of

19、the root.These form SWhen agreement on all of S is needed,a.e.BA can be run using supplemental bits.ConclusionsUses of S:Easier to generate than a single random coinflip:S can also be generated w.h.p scalably in the full information nonadaptive adversary model(whereas a single random coinflip cant)A

20、 polylog size S has sufficient randomness to specify a set of n small quorums which are all good w.h.p(submitted to ICDCN)Useful in the asynch alg w/nonadaptive adv(SODA08)Future work(contd)Asynchronous?Towards more practical scalable BA?Bounds on the communication of the bad procs makes the a.e.BA to BA easy.Likely this would simplify the a.e.BA protocolOther problems(SMPC,handling churn and larger name spaces)Other user models(selfish)Questions?

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|