ImageVerifierCode 换一换
格式:PPT , 页数:17 ,大小:448.01KB ,
文档编号:4697745      下载积分:19 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-4697745.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(晟晟文业)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(两个重要极限课件-2.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

两个重要极限课件-2.ppt

1、目录 上页 下页 返回 结束 二、二、两个重要极限两个重要极限 一、函数极限与数列极限的关系一、函数极限与数列极限的关系 及夹逼准则及夹逼准则第六节极限存在准则及两个重要极限 第一章 目录 上页 下页 返回 结束 一、一、函数极限与数列极限的关系及夹逼准则函数极限与数列极限的关系及夹逼准则1.函数极限与数列极限的关系函数极限与数列极限的关系定理定理1.Axfxx)(lim0:nx,0 xxn有定义,),(0nxxnAxfnn)(lim为确定起见,仅讨论的情形.0 xx 有)(nxfxnx目录 上页 下页 返回 结束 定理定理1.Axfxx)(lim0:nx)(,0nnxfxx 有定义,)(0n

2、xxn且设,)(lim0Axfxx即,0,0当,00时xx有.)(Axf:nx)(,0nnxfxx 有定义,且,)(0nxxn对上述 ,Nn 时,有,00 xxn于是当Nn 时.)(Axfn故Axfnn)(lim可用反证法证明.(略).)(limAxfnn有证:证:当 xyA,N“”“”0 xO目录 上页 下页 返回 结束 定理定理1.Axfxx)(lim0:nx)(,0nnxfxx 有定义,)(0nxxn且.)(limAxfnn有说明说明:此定理常用于判断函数极限不存在.法法1 找一个数列:nx,0 xxn,)(0nxxn且不存在.)(limnnxf使法法2 找两个趋于0 x的不同数列nx及

3、,nx使)(limnnxf)(limnnxf)(x)(nx目录 上页 下页 返回 结束 例例1.证明xx1sinlim0不存在.证证:取两个趋于 0 的数列21nxn及221nxn有nnx1sinlimnnx1sinlim由定理 1 知xx1sinlim0不存在.),2,1(n02sinlimnn1)2sin(lim2nn目录 上页 下页 返回 结束 2.函数极限存在的夹逼准则函数极限存在的夹逼准则定理定理2.,),(0时当xUxAxhxgxxxx)(lim)(lim00,)()(xhxg)(xfAxfxx)(lim0)0(Xx)(x)(x)(x且(利用定理1及数列的夹逼准则可证)目录 上页

4、下页 返回 结束 1sincosxxx圆扇形AOB的面积二、二、两个重要极限两个重要极限 1sinlim.10 xxx证证:当即xsin21x21xtan21亦即)0(tansin2xxxx),0(2x时,)0(2 x,1coslim0 xx1sinlim0 xxx显然有AOB 的面积AOD的面积xxxcos1sin1故有注注注 OBAx1DC注注当20 x时xxcos1cos102sin22x222x22x0)cos1(lim0 xx目录 上页 下页 返回 结束 例例2.求.tanlim0 xxx解解:xxxtanlim0 xxxxcos1sinlim0 xxxsinlim0 xxcos1l

5、im01例例3.求.arcsinlim0 xxx解解:令,arcsin xt 则,sintx 因此原式tttsinlim0 1lim0tttsin1目录 上页 下页 返回 结束 20sinlimx2x2x21nnnR2cossinlimRn例例4.求.cos1lim20 xxx解解:原式=2220sin2limxxx212121例例5.已知圆内接正 n 边形面积为证明:.lim2RAnn证证:nnAlimnnnnRnA2cossin2 R说明说明:计算中注意利用1)()(sinlim0)(xxx目录 上页 下页 返回 结束 2.e)1(lim1xxx证证:当0 x时,设,1nxn则xx)1(1

6、11)1(nnnn)1(11nnn)1(lim11 limn111)1(nn111ne11)1(limnnn1)1(lim11)(nnnnee)1(lim1xxx(P5354)目录 上页 下页 返回 结束 当x,)1(tx则,t从而有xxx)1(lim1)1(11)1(limttt)1(1)(limtttt11)1(limttt)1()1(lim11tttte故e)1(lim1xxx说明说明:此极限也可写为e)1(lim10zzz时,令目录 上页 下页 返回 结束 例例6.求.)1(lim1xxx解解:令,xt则xxx)1(lim1ttt)1(lim1 1limttt)1(1e1说明说明:若利

7、用,e)1(lim)()(1)(xxx则 原式111e)1(limxxx目录 上页 下页 返回 结束 limx例例7.求.)cos(sinlim11xxxx解解:原式=2)cos(sinlim211xxxx2)sin1(lim2xxx)sin1(2xexx22sinx2sin1目录 上页 下页 返回 结束 的不同数列内容小结内容小结1.函数极限与数列极限关系的应用(1)利用数列极限判别函数极限不存在(2)数列极限存在的夹逼准则法法1 找一个数列:nx,0 xxn)(0nxxn且使)(limnnxf法法2 找两个趋于0 xnx及,nx使)(limnnxf)(limnnxf不存在.函数极限存在的夹逼准则目录 上页 下页 返回 结束 2.两个重要极限1sinlim)1(0e)11(lim)2(或e)1(lim10注注:代表相同的表达式目录 上页 下页 返回 结束 思考与练习思考与练习填空题填空题 (14);_sinlim.1xxx;_1sinlim.2xxx;_1sinlim.30 xxx;_)11(lim.4nnn0101e 作业作业 P56 1 (4),(5),(6);2 (2),(3),(4);4 (4),(5)第七节

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|