ImageVerifierCode 换一换
格式:PPT , 页数:32 ,大小:237.14KB ,
文档编号:4709944      下载积分:25 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-4709944.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(晟晟文业)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(空间向量及其线性运算课件.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

空间向量及其线性运算课件.ppt

1、高中数学人教高中数学人教B版选修版选修2-1复习回顾:1.平面向量的相关概念:向量的定义;向量的定义;向量的表示方法;向量的表示方法;零向量;零向量;相等向量;相等向量;共线向量;共线向量;向量的模;向量的模;相反向量。相反向量。ABa向量的定义:具有大小和方向的量向量的定义:具有大小和方向的量向量的表示方法:向量的表示方法:.几何表示法:有向线段几何表示法:有向线段.字母表示法:始点字母表示法:始点A终点终点B的向量的向量 或者表示或者表示为为 。零向量:始点与终点重合的向量零向量:始点与终点重合的向量。向量的模:表示向量的有向线段的长度。向量的模:表示向量的有向线段的长度。相等向量:模相等

2、、方向相同的向量。相等向量:模相等、方向相同的向量。相反向量:模相等、方向相反的向量。相反向量:模相等、方向相反的向量。共线向量:基线平行或重合的向量,也叫平行向量。共线向量:基线平行或重合的向量,也叫平行向量。复习回顾:1.平面向量的相关概念:2、平面向量的加法、减法与数乘运算向量加法的三角形法则ab向量加法的平行四边形法则ba向量减法的三角形法则aba ba ba (k0)ka (k0)ka (k0)k空间向量的数乘空间向量的加减法平面向量概念加法减法数乘运算运算律定义 表示法 相等向量减法:三角形法则加法:三角形法则或平行四边形法则2.空间向量及其加减与数乘运算空间向量具有大小和方向的量

3、数乘:ka,k为正数,负数,零)()(cbacbaabba加法交换律加法结合律数乘分配律abba加法交换律数乘分配律加法:三角形法则或平行四边形法则减法:三角形法则数乘:ka,k为正数,负数,零加法结合律成立吗?aaabkakbak)()(aaabkakbak)()(加法结合律:)()(cbacbaabcab+c+()OABCab+abcab+c+()OABCbc+推广:(1)首尾相接的若干向量之和,等于由起始向量的起点指向末尾向量的终点的向量;nnnAAAAAAAAAA11433221(2)首尾相接的若干向量若构成一个封闭图形,则它们的和为零向量。01433221AAAAAAAAnABCDA

4、1B1C1D1例 1已知平行六面体ABCD-A1B1C1D1,化简下列向量表达式,并标出化简结果的向量。(如图).(21)3(;DD)2(;)1(111BCDDADABBCABAAADABABCDABCDA1B1C1D1ABCDa平行六面体:平行四边形ABCDABCD平移向量 到A A1 1B B1 1C C1 1D D1 1的轨迹所形成的几何体.a记做ABCD-AABCD-A1 1B B1 1C C1 1D D1 1ABCDA1B1C1D1).(21)3(;DD)2(;)1(111BCDDADABBCABAAADAB1111)1(ACCCACAAACAAADAB解:结论:始点相同的三个不共面

5、向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所示向量例 1已知平行六面体ABCD-A1B1C1D1,化简下列向量表达式,并标出化简结果的向量。(如图)ABCDA1B1C1D1).(21)3(;DD)2(;)1(111BCDDADABBCABAAADAB1111)()2(BDDBDDADABDDBCABDD解:例 1已知平行六面体ABCD-A1B1C1D1,化简下列向量表达式,并标出化简结果的向量。(如图)ABCDA1B1C1D1).(21)3(;DD)2(;)1(111BCDDADABBCABAAADAB例 1已知平行六面体ABCD-A1B1C1D1,化简下列向量表达式

6、,并标出化简结果的向量。(如图)AMCMCBCBCCBCDDADABAC21AC)(21AC)(21)3(111解:MABCDMN)(因因此此得得由由已已知知,得得证证明明:BCADMNBCADMNCNDNMAMBCNBCMBMNDNADMAMN21.2)2()1(.,)2()1(例例2如图,M、N分别是四面体ABCD的棱AB、CD的中点,求证:)(BCADMN21例 3 ABCDA1B1C1D1111111 )3(2 )2(ACxADABACACxBDADACxCCDAAB1111 )1(已知平行六面体ABCD-AABCD-A1 1B B1 1C C1 1D D1 1,求满足下列各式的x的值

7、。ABCDA1B1C1D1CCDAAB1111 )1(解.1 1111xACCCCBABACxCCDAAB1111 )1(例 3 已知平行六面体ABCD-AABCD-A1 1B B1 1C C1 1D D1 1,求满足下列各式的x的值。例 3 已知平行六面体ABCD-AABCD-A1 1B B1 1C C1 1D D1 1,求满足下列各的x的值。ABCDA1B1C1D1112 )2(BDAD 111BDADAD)(111BDBCAD111CDAD 1AC1112 )2(ACxBDAD.1xABCDA1B1C1D111 )3(ADABAC)()()(11ADAAABAAABAD)(21AAABA

8、D12AC111 )3(ACxADABAC.2x例 3 已知平行六面体ABCD-AABCD-A1 1B B1 1C C1 1D D1 1,求满足下列各式的x的值。平面向量概念加法减法数乘运算运算律定义 表示法 相等向量减法:三角形法则加法:三角形法则或平行四边形法则空间向量具有大小和方向的量小结类比思想 数形结合思想)()(cbacbaabba加法交换律加法结合律数乘分配律aaabkakbak)()()()(cbacbaabba加法交换律加法结合律数乘分配律aaabkakbak)()(数乘:ka,k为正数,负数,零数乘:ka,k为正数,负数,零作业基底呢?作基底呢?什么样的才能那空间中应该用几

9、个作,个不共线的向量作基底平面向量基本定理用两存在?量共面应该有什么定理,你能不能想想空间向联想平面向量基本定理线应该满足什么条件?在空间中,两个向量共课下思考题练习.3.2.1:3B82PABMCGD)(21 )2()(21 )1(ACABAGBDBCAB练习2在空间四边形在空间四边形ABCDABCD中中,点点M M、G G分别是分别是BCBC、CDCD边的中点边的中点,化简化简ABMCGD)(21 )2()(21 )1(ACABAGBDBCABAGMGBMAB原式)1()(21 ACABMGBMAB(2)原式)(21 ACABMGBMMGMBMGBM 练习2在空间四边形在空间四边形ABCD

10、ABCD中中,点点M M、G G分别是分别是BCBC、CDCD边的中点边的中点,化简化简练习 1解:如图,在三棱柱ABCA1B1C1中,M是BB的中点,化简下列各式,并在图中标出化简得到的向量。C1B1A1MABC.)3(;21)2(;)1(111CBACAAAACBACBACB11111)3(21)2()1(BACBACAAAMAACBACCABACBABCDMN练习2 如图,M、N分别是四面体ABCD的棱AB、CD的中点,求证:BDAACBCDMN4ABCDDCBA)()1(CCBCABxACADyABxAAAE)2(练习3在立方体在立方体ACAC1 1中中,点点E E是面是面ACAC 的

11、中心的中心,求下列各式中的求下列各式中的x,y.x,y.EABCDDCBA)()1(CCBCABxACADyABxAAAE)2(练习3E在立方体在立方体ACAC1 1中中,点点E E是面是面ACAC 的中心的中心,求下列各式中的求下列各式中的x,y.x,y.ABCDDCBAADyABxAAAE)2(练习3E在立方体在立方体ACAC1 1中中,点点E E是面是面ACAC 的中心的中心,求下列各式中的求下列各式中的x,y.x,y.练习4jiOE423kjiOF2423ADBBOADCFEIJK。、表示试用的中点。设、分别为、,点,中,在长方体OFOE,OK,OJ,OIBDDBFE1OKOJOI2OC4OB3OABDACOADBkjikji

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|