1、平行四边形的性质(平行四边形的性质(2 2)上节课我们掌握了平行四边上节课我们掌握了平行四边形的哪些性质?形的哪些性质?什么是平行四边形?什么是平行四边形?(1)对边平行且相等对边平行且相等(2)对角相等对角相等(3)对角线互相平分对角线互相平分2.平行四边形的性质:1.平行四边形的定义平行四边形的定义:两组对边分别平行两组对边分别平行的四边形叫做平行四边形的四边形叫做平行四边形 比比 一一 比比w2、的周长是的周长是20,已知,已知AB6,则,则 BC,CD.w1、判断正误:平行线间的线段相等、判断正误:平行线间的线段相等.()4ABCD6w3、中,中,A比比B大大 30 ,则则 w A,D
2、.ABCDw4、若、若A、B、C三点不共线,则以这三点为三点不共线,则以这三点为 w 顶点的平行四边形有个顶点的平行四边形有个.3105 75 运用所学知识解决问题运用所学知识解决问题EFHGABDC运用所学知识解决问题运用所学知识解决问题已知已知:如图如图,ABCD,EFGH.请判断线段请判断线段EF与与GH有何数量关系?有何数量关系?夹在两条平行线间的夹在两条平行线间的平行线段平行线段相等相等ABCDO 上图的平行四边形上图的平行四边形ABCD中中有几对全等三角形有几对全等三角形?例1 如图:四边形如图:四边形ABCD是是平行四边形,平行四边形,AB=10,AD=8,ACBC,求,求BC、
3、CD、AC、OA的长及的长及 ABCD的面积。的面积。ADBCO一位饱经沧桑的老人,经过一辈子的辛一位饱经沧桑的老人,经过一辈子的辛勤劳勤劳动,到晚年的时候,终于拥有了一块平行四动,到晚年的时候,终于拥有了一块平行四边形的土地,由于年迈体弱,他决定把这块边形的土地,由于年迈体弱,他决定把这块土地分给他的四个孩子,他是这样分的:土地分给他的四个孩子,他是这样分的:当四个孩子看到当四个孩子看到后,三个弟弟后,三个弟弟都都抢着说应该抢着说应该把这四块地中最大的一块给对家里贡献最大把这四块地中最大的一块给对家里贡献最大的大哥的大哥,同学们,你认为,同学们,你认为他们能做到吗?他们能做到吗?为为什么呢?
4、什么呢?A AC CD DB Bo oMABOBCOCDODAOABCD1SSSSS4 ABCDABCD的对角线的对角线ACAC与与BDBD相交于相交于O,O,直线直线EFEF过点过点 O O与与 AB AB、CDCD分别相交于分别相交于E E、F,F,试探究试探究OEOE与与OFOF的的大小关系并说明理由。大小关系并说明理由。ABCDOEF1 12 23 34 4探究一探究一O OD DC CB BA AE EF FO OD DC CB BA AE EF F(1)(1)(2)(2)在上述问题中,若直线在上述问题中,若直线EFEF绕与边绕与边DADA、BCBC的的延长延长线线交于点交于点E E
5、、F F,(如图,(如图2 2),上述结论是否仍然成),上述结论是否仍然成立?试说明理由。立?试说明理由。在上述问题中,若将直线在上述问题中,若将直线 EFEF绕点绕点O O旋转至下图(旋转至下图(3 3)的位置时,上述结论是否)的位置时,上述结论是否仍然成立?仍然成立?F FE EF FO OD DC CB BA AE E(1)(1)O OD DC CB BA AE EF F(3)(3)(3)(3)(4)(4)若此时再与两边延长线相交呢?若此时再与两边延长线相交呢?O OD DC CB BA AE EF F(4)(4)M MN N小结:过平行四边形的对角线交点作直线与平行四边形小结:过平行四
6、边形的对角线交点作直线与平行四边形的一组对边或对边的延长线相交,得到线段总相等。的一组对边或对边的延长线相交,得到线段总相等。O例例2 已知:已知:如图如图,在在 中,中,AC与与BD相交于点相交于点OABCD探究二探究二A AB BC CD D 如果两个量的比等于一个不为零的常数,那么就说这两个量xy=0.5m2abv=-2=成正比例成正比例.m216.3正比例函数正比例函数abxvy=0.5=-2=yxk=m216.3正比例函数abxvy=0.5=-2=函数函数y=kx(k是不等于零的常数)叫做正比例函数,是不等于零的常数)叫做正比例函数,k叫做比例系数叫做比例系数.练习1 判断下列各题中
7、所指的两个量是否成正比例。(是在括号内打“”,不是在括号内打“”)(1)圆周长C与半径r()(2)圆面积S与半径r()(3)在匀速运动中的路 程S与时间t()(4)底面半径r为定长的圆锥的侧 面积S与母线长l()(5)已知y=3x-2,y与x ()rc 22rSS=v trls函数函数y=kx(k是不等于零的常数)叫做正比例函数,是不等于零的常数)叫做正比例函数,k叫做比例系数叫做比例系数.练习练习2练习练习3 若一个正比例函数的比例系数是4,则它的解析式是_.正比例函数y=kx中,当x=2时,y=10,则它的解析式是_.y=4xy=5x练习练习4 已知正比例函数y=-2x,写出下列集合中相对
8、应的自变量x的值或函数y的值。xy-4-2 0-2-6-10840135练习练习4 已知正比例函数y=-2x,写出下列集合中相对应的自变量x的值或函数y的值。y-2-6-10840自自变变量量的的值值练习练习4 已知正比例函数y=-2x,写出下列集合中相对应的自变量x的值或函数y的值。x自自变变量量的的值值函函数数的的值值练习练习4 已知正比例函数y=-2x,写出下列集合中相对应的自变量x的值或函数y的值。自自变变量量的的值值函函数数的的值值代入解析式代入解析式练习练习5已知正比例函数y=2x中,(1)若0 y 10,则x的取值范围为_.(2)若-6 x 10,则y的取值范围为_.2x12y0
9、 10-6 100 x5-12y20 江二中准备添置一批篮球,已知所购江二中准备添置一批篮球,已知所购 篮球的总价篮球的总价y y(元)与个数(元)与个数x x(个)成正比例,(个)成正比例,当当x=4x=4(个)时,(个)时,y=100y=100(元)。(元)。(1 1)求正比例函数关系式及自变量的取值范围;)求正比例函数关系式及自变量的取值范围;(2 2)求当)求当x=10 x=10(个)时,函数(个)时,函数y y的值;的值;(3 3)求当)求当y=500y=500(元)时,自变量(元)时,自变量x x的值。的值。例 1解解(1)设所求的正比例函数的解析式为设所求的正比例函数的解析式为y
10、=kx,(2)当)当x=10(个)时,(个)时,y=25x=2510=250(元)。(元)。把把x=4,y=100代入,得代入,得 100=4k。解得解得 k=25。所以,所求的正比例函数的解析式是所以,所求的正比例函数的解析式是y=25x。自变量自变量x x的取值范围是所有自然数。的取值范围是所有自然数。(3)当)当y=500(元)时,(元)时,x=20(个)。(个)。y25500 25例例 2 2 下图表示江山到礼贤主要停靠站之间路程的下图表示江山到礼贤主要停靠站之间路程的千米数。一辆满载礼贤乘客的中巴车于上午千米数。一辆满载礼贤乘客的中巴车于上午8 8:0000整从江山开往礼贤,已知中巴
11、车行驶的路程整从江山开往礼贤,已知中巴车行驶的路程S S(千米)(千米)与时间与时间t t(分)成正比例(途中不停车),当(分)成正比例(途中不停车),当t=4t=4(分)(分)时,时,S=2S=2千米。问:千米。问:(1)正比例函数的解析式;)正比例函数的解析式;(2)从)从8:30到到8:40,该中巴车行驶在哪一段公路上;,该中巴车行驶在哪一段公路上;(3)从何时到何时,该车行使在淤头至礼贤这段公路上。)从何时到何时,该车行使在淤头至礼贤这段公路上。江山江山贺村贺村淤头淤头礼贤礼贤14千米千米6千米千米2千米千米 下图表示江山到礼贤主要停靠站之间路程的千米数。一辆满载礼贤乘客下图表示江山到
12、礼贤主要停靠站之间路程的千米数。一辆满载礼贤乘客的中巴车于上午的中巴车于上午8 8:0000整从江山开往礼贤,已知中巴车行驶的路程整从江山开往礼贤,已知中巴车行驶的路程S S(千米)(千米)与时间与时间t t(分)成正比例(途中不停车),当(分)成正比例(途中不停车),当t=4t=4(分)时,(分)时,S=2S=2千米。问:千米。问:(1)正比例函数的解析式;)正比例函数的解析式;(2)从)从8:30到到8:40,该中巴车行驶在哪一段公路上;,该中巴车行驶在哪一段公路上;(3)从何时到何时,该车行使在淤头至礼贤这段公路上。)从何时到何时,该车行使在淤头至礼贤这段公路上。江山江山贺村贺村淤头淤头
13、礼贤礼贤14千米千米6千米千米2千米千米解解(1)设所求的正比例函数的解析式为设所求的正比例函数的解析式为S=k t,(2)由已知,得)由已知,得30t40,把把t=4,S=2代入,得代入,得 2=4t。解得解得 k=0.5。所以,所求的正比例函数的解析式是所以,所求的正比例函数的解析式是S=0.5t。302S40即即15 S20。由图可知中巴车行使在贺村至淤头公路上。由图可知中巴车行使在贺村至淤头公路上。(3)由已知,得)由已知,得20S22,200.5t22即即40t44。所以从所以从8:40至至8:44,该车行使在淤头至礼贤公路上。,该车行使在淤头至礼贤公路上。待定系数法求正比例函数解析
14、式的一般步骤待定系数法求正比例函数解析式的一般步骤二、二、把已知的自变量的值和对应的函数值代入把已知的自变量的值和对应的函数值代入所设的解析式,得到以比例系数所设的解析式,得到以比例系数k为未知数的为未知数的方程,解这个方程求出比例系数方程,解这个方程求出比例系数k。三、三、把把k的值代入所设的解析式。的值代入所设的解析式。一、一、设所求的正比例函数解析式。设所求的正比例函数解析式。待定系数法例例 1 1解解(1)设所求的正比例函数的解析式为设所求的正比例函数的解析式为y=kx,例 2 解解(1)设所求的正比例函数的解析式为设所求的正比例函数的解析式为S=k t,把把x=4,y=100代入,得
15、代入,得 100=4k。解得解得 k=25。把把t=4,S=2代入,得代入,得 2=4t。解得解得 k=0.5。所以,所求的正比例函数的解析式是所以,所求的正比例函数的解析式是y=25x。所以,所求的正比例函数的解析式是所以,所求的正比例函数的解析式是S=0.5t。练习练习6 一个容积为一个容积为50公升的空油箱到加油站公升的空油箱到加油站加油,已知注入油量加油,已知注入油量y(公升)和注油的时间(公升)和注油的时间x(分分)成正比例,当成正比例,当x=3(分)时,(分)时,y=15(公升)。(公升)。(1)求正比例函数的解析式;)求正比例函数的解析式;(2)若注了)若注了8分钟的油,问油箱里
16、的油会满出来吗?分钟的油,问油箱里的油会满出来吗?(3)若要把这个油箱注满,问需要多长时间?)若要把这个油箱注满,问需要多长时间?(4)求自变量的取值范围。)求自变量的取值范围。练习练习7 已知已知y与与x+2 成正比例,当成正比例,当x=4时,时,y=12,那么当那么当x=5时,时,y=_.有人说如果有人说如果y与与x成正比例,当成正比例,当x扩扩大若干倍,大若干倍,y也扩大同样倍。也扩大同样倍。你认为他讲的对吗?你认为他讲的对吗?思考题思考题?本课小结函数函数y=kx(k是不等于零的常数)叫做正比例函数。是不等于零的常数)叫做正比例函数。比例系数比例系数 (1)直接根据已知的比例系数求出解析式)直接根据已知的比例系数求出解析式 (2)待定系数法)待定系数法1、正比例函数的定义、正比例函数的定义2、求正比例函数解析式的两种方法:、求正比例函数解析式的两种方法:3、在知道正比例函数解析式的前提下、在知道正比例函数解析式的前提下函数的值与取值范围函数的值与取值范围自变量的值与取值范围自变量的值与取值范围
侵权处理QQ:3464097650--上传资料QQ:3464097650
【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。