ImageVerifierCode 换一换
格式:PPT , 页数:48 ,大小:721.50KB ,
文档编号:4730700      下载积分:25 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-4730700.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(晟晟文业)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(微积分英文课件 .ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

微积分英文课件 .ppt

1、00lim()()xxf xf xExample224422322 231lim(2)323 22xxxfxx 一、is continuous at0 x()f xLimitsa.0000,0,1,0,0.0二b.00311lim1xxxExample22limxaxaxaxa301tan1 sinlimxxxxc.1sinlim0 xxx0tan6limsin2xxx00Examplelim2 sin(0)2nnnxx221sinlim21xxxxsinlim0 xxx01lim sin0 xxxd.11021lim21xxxExamplelim1xxxxx3sinlim32cosxxxxx

2、e.Example2lim()xxxx111lim()ln1xxxlim(ln)xxxlnlimxxxxExamplelim()xxxxxf.0Example12sinlim2xxxxg.exxx )11(lim13101tanlim()1 sinxxxxExample3lim()6xxxx1limtan()4nnn232limcos11xxxxxj.Examplek.Example40162lim(16)hhfhsinlim0 xxx20limsin0 xxx4)(xxf)sin1(sinlim)1(xxxxxsin1sin)1(21cos21sin2xxxx21cos)1(21sin2xx

3、xx无穷小有界机动 目录 上页 下页 返回 结束 Exampleexists?If so,find the value of and the value of the limit.133lim222xxaaxxxaIs there a number such thatSolutionBecausea0)1(lim22xxxaaaxxx15)33(lim22ExampleIf we know that the limit015a133lim222xxaaxxxdoes not exist,it follows that the value of must be 0,namely,a1515aso

4、 1)2)(1()2)(3(3lim1315153lim133lim2222222xxxxxxxxxxaaxxxxxTrue or false1.4442828lim()limlim4444xxxxxxxxx2.2212211lim(67)67lim56lim(56)xxxxxxxxxxx3.12211lim(3)3lim24lim(24)xxxxxxxxx4.If5.5lim()0 xf x5lim()0,xg xthen does not exist。5()lim()xf xg xIf5lim()xf x 5lim(),xg x then does not exist。5()lim()xf

5、 xg xTrue or falseandand6.If exists,7.2lim()()xf x g xThen the limit must be 。If0lim()xf x 0lim(),xg x then0lim()()0.xf xg x(2)(2)fglimxxxExampleTrue or falseand8.If exists9.2lim()xafxthen exists。If(1)0(3)0,fand fthen there exists a number between 1 and 3 such that clim()xaf x()0.f c True or false10

6、.If()1f xfor all xand0lim()xf xthen0lim()1.xf xTrue or falseexists,三、Choose the best answer for each of the Following,322sin3lim0 xkxx1.Ifthenk=_.,1)1(lim10ekxxx2.Ifthenk=_.94.32.23.1.DCBA2.2.1.1.DCBA四、四、Fill in the blanks:sin1.lim()xxxxe0112.lim(sinsin2)2xxxxx03.lim12xxx104.limxxeExample If)(xf,2)c

7、os1(xxa0 x,10 x,)(ln2xb0 xis continuous at x=0,then a=,b=.20)cos1(lim)0(xxafx2a)(lnlim)0(20 xbfxblnbaln122e机动 目录 上页 下页 返回 结束)1)()(xaxbexfx,0 xFind a and b.机动 目录 上页 下页 返回 结束 Example Ifhas an infinite discontinuity at,1xand has a removable discontinuity at0 xSolution)1)(lim0 xaxbexxbexaxxx)1)(lim0ba10

8、1,0ba,1x)1(lim1xxbexxSo,does not exist.0)(lim1bexxeebxx1lim机动 目录 上页 下页 返回 结束 Because has an infinite discontinuity at ,soBecause has a removable discontinuity atffExample Find a,b,such that0)1(lim33bxaxx0)1(lim313xbxxa0)1(lim33bxaxx机动 目录 上页 下页 返回 结束 SolutionSincethus01lim33xbxaxx331xy,01a,1a)1(lim33

9、xxbx2333231)1(1limxxxxx0 xy机动 目录 上页 下页 返回 结束 therefore)1)(1(sin)1()(xxxxxxf机动 目录 上页 下页 返回 结束 Example Find the points of discontinuity and identify its type,where)1)(1(sin)1(lim1xxxxxx1sin21 x=1.)(lim1xfx x=1.,1)(lim0 xfx,1)(lim0 xfx x=0.机动 目录 上页 下页 返回 结束 has a removable discontinuity atfffhas a jump

10、 discontinuity athas an infinite discontinuity at Example Find.sin12lim410 xxeexxxSolutionxxeexxxsin12lim410 xxeeexxxxsin12lim43401xxeexxxsin12lim410 xxeexxxsin12lim4101机动 目录 上页 下页 返回 结束.1sin12lim410 xxeexxx机动 目录 上页 下页 返回 结束.)321(lim1xxxxLetxxxxf1)321()(xxx11)()(33231Then)(xf3x133.3)(limxfxExample F

11、indUsing the Squeeze Theorem we get六、六、ExampleShow that there is a root of the equationxex2between 0 and 1.SolutionLetWe have01)0(g01)1(1egThus N=0 is a number between g(0)and g(2).Since g is continuous on 0,1,so the IntermediateValue Theorem says there is a number c between 0 and 1 such that g(c)=0

12、.That is ,)(2xexgx.2cec六、六、ExampleProve that the equation has exactly one real root。xx sin1.If,then=_.hxfhxfh)()3(lim0001)(0 xfFill in the blanks:2.If,then=_.hxfhxfh)()(lim0001)(0 xf3.If,then=_.hhxfhxfh)3()2(lim0001)(0 xfFill in the blanks:4.If,then=_.hhxfhxfh)()(lim0001)(0 xfxxfxfx)3()2(lim05.If,th

13、en=_.hbhxfahxfh)()(lim0006.Ifthen,1)0(0)0(fandf1)(0 xf=_.Fill in the blanks:5.If is continuous at and,then=_.)1(f,1x)(xfFill in the blanks:21)(lim1xxfx1)0(1)0(fandfxxfexx1)(lim07.If,then=_.1)1(3)3(lim.81xaxIfxx,thena=_.Derivatives一、一、The chain rule Example Differentiate the function)(sin.3arctan)(.2

14、)1ln()(.12nnnxfyxxxfxxxxf0001sin)(.5.42xxxxxfxxyxaaxExampleFind.)(,)(),(xffxffxff,sin)21(xxf1.if 二、二、Implicit DifferentiationExample1.Find if 22dyxd1xyeyx2.Find and if)0(y 823yxydydxExample1.Find if)(nfxxxfsin)(三、三、Higher Derivatives2.Find if)(nf(0).cxdyadbcaxbExample1.Find if f xyyx四、四、logarithmic

15、differentiation2.Find if yxxysin五、五、Differential()dyfx dxFind if dyxaaxxxyExampleLet 0,0,1sin)(2xbaxxxxxfFind the values of a and b that make differentiable everywhere.()f xBecause f is differentiable everywhere,thus f is continuous and differentiable at x=0ExampleSolutionLet 0,0,1sin)(2xbaxxxxxfFin

16、d the values of a and b that make differentiable at .()f xBecause f is differentiable at ,thus f is continuous at x=0.ExampleSolution0 x 0 x Since f is continuous at x=0200001lim()limsin0lim()lim()(0)xxxxf xxxf xaxbbfbThus0b Since f is differentiable at0 x 2000001sin()(0)1(0)limlimlimsin000()(0)(0)limlim00 xxxxxxbf xfxfxxxxf xfaxbbfaxx0a Thus

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|