ImageVerifierCode 换一换
格式:PPT , 页数:34 ,大小:646.50KB ,
文档编号:473495      下载积分:4 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-473495.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(金手指1983)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(部审人教版九年级数学下册ppt课件27.2.2 相似三角形的性质.ppt)为本站会员(金手指1983)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

部审人教版九年级数学下册ppt课件27.2.2 相似三角形的性质.ppt

1、27.2 相似三角形 第二十七章 相 似 27.2.2 相似三角形的性质 九年级数学下(RJ) 教学课件 1. 理解并掌握相似三角形中对应线段的比等于相似 比,并运用其解决问题. (重点、难点) 2. 理解相似三角形面积的比等于相似比的平方,并 运用其解决问题. (重点) 学习目标 导入新课导入新课 复习引入 1. 相似三角形的判定方法有哪几种? 定义:对应边成比例,对应角相等的两个三角 形相似 平行于三角形一边,与另外两边相交所构成的 三角形与原三角形相似 三边成比例的两个三角形相似 两边成比例且夹角相等的两个三角形相似 两角分别相等的两个三角形相似 一组直角边和斜边成比例的两个直角三角 形

2、相似 2. 三角形除了三个角,三条边外,还有哪些要素? 如果两个三角形相似,那 么,对应的这些要素 有什么关系呢? 高 中线 角平分线 周长 面积 如图,ABC ABC,相似比为 k,它们 对应高、对应中线、对应角平分线的比各是多少? 讲授新课讲授新课 相似三角形对应线段的比 一 A B C A B C 合作探究 ABC ABC, BB , 解:如图,分别作出 ABC 和 A B C 的高 AD 和 A D 则ADB =A D B=90. ABD A B D . A B C A B C D D . ADAB k A DA B 类似地,可以证明相似三角形对应中线、角平 分线的比也等于相似比. 由

3、此我们可以得到: 相似三角形对应高的比等于相似比. 一般地,我们有: 相似三角形对应线段的比等于相似比. 归纳: 解: ABC DEF, D E F H 例1 已知 ABCDEF,BG、EH 分别是 ABC 和 DEF 的角平分线,BC = 6 cm,EF = 4cm,BG = 4.8 cm. 求 EH 的长. (相似三角形对应 角平分线的比等于相似比), BGBC EHEF ,解得 EH = 3.2. 4.86 4EH A G B C 典例精析 故 EH 的长为 3.2 cm. 1. 如果两个相似三角形的对应高的比为 2 : 3,那么对 应角平分线的比是 ,对应边上的中线的比是 _ . 2.

4、 ABC 与 ABC 的相似比为3 : 4,若 BC 边上的 高 AD12 cm,则 BC 边上的高 AD _ . 2 : 3 2 : 3 16 cm 练一练 相似三角形的周长比也等于相似比吗?为什么? 想一想: 如果 ABC ABC,相似比为 k,那么 ABBCCA k A BB CC A , 因此 ABk AB,BCkBC,CAkCA, 从而 . ABBCCAkA BkB CkC A k A BB CC AA BB CC A 相似三角形面积的比 二 如图,ABC ABC,相似比为 k,它们 的面积比是多少? 合作探究 A B C A B C 由前面的结论,我们有 2 1 2 . 1 2 A

5、BC A B C BC AD SBCAD k kk SB CA D B C A D A B C A B C D D 相似三角形面积的比等于相似比的平方 由此得出: 归纳: 1. 已知两个三角形相似,请完成下列表格: 相似比相似比 2 k 周长比周长比 面积比面积比 10000 试一试: 1 3 2 4 1 3 1 9 100 100 k k2 2. 把一个三角形变成和它相似的三角形, (1) 如果边长扩大为原来的 5 倍,那么面积扩大为 原来的_倍; (2) 如果面积扩大为原来的 100 倍,那么边长扩大 为原来的_倍. 25 10 3. 两个相似三角形的一对对应边分别是 35 cm、14 c

6、m, (1) 它们的周长差 60 cm,这两个三角形的周长分别 是_; (2) 它们的面积之和是 58 cm2,这两个三角形的面 积分别是_. 100 cm、40 cm 50 cm2、8 cm2 解:在 ABC 和 DEF 中, AB=2DE,AC=2DF, 又 D=A, DEF ABC ,相似比为 1 : 2. A B C D E F 1 . 2 DEDF ABAC 例2 如图,在 ABC 和 DEF 中,AB = 2 DE ,AC = 2 DF,A = D. 若 ABC 的边 BC 上的高为 6,面 积为 ,求 DEF 的边 EF 上的高和面积. 12 5 A B C D E F ABC

7、的边 BC 上的高为 6,面积为 , 12 5 DEF 的边 EF 上的高为 6 = 3, 1 2 面积为 2 1 12 53 5. 2 如果两个相似三角形的面积之比为 2 : 7,较 大三角形一边上的高为 7,则较小三角形对应边上 的高为_. 14 练一练 例3 如图,D,E 分别是 AC,AB 上的点,已知 ABC 的面积为100 cm2,且 ,求 四边形 BCDE 的面积. 5 3 AB AD AC AE ADE ABC. 它们的相似比为 3 : 5, 面积比为 9 : 25. B C A D E 解: BAC = DAE,且 3 5 AEAD ACAB , 又 ABC 的面积为 100

8、 cm2, ADE 的面积为 36 cm2 . 四边形 BCDE 的面积为10036 = 64 (cm2). B C A D E 如图,ABC 中,点 D、E、F 分别在 AB、AC、 BC 上,且 DEBC,EFAB. 当 D 点为 AB 中点时, 求 S四边形BFED : SABC 的值. A B C D F E 练一练 解: DEBC,D 为 AB 中点, ADE ABC , 相似比为 1 : 2, 面积比为 1 : 4. 1 2 AEAD . ACAB A B C D F E 又 EFAB, EFC ABC ,相似比为 1 : 2, 面积比为 1 : 4. 设 SABC = 4,则 S

9、ADE = 1,SEFC = 1, S四边形BFED = SABCSADESEFC = 411 = 2, S四边形BFED : SABC = 2 : 4 = 1. 2 1. 判断: (1) 一个三角形的各边长扩大为原来的 5 倍,这个 三角形的周长也扩大为原来的 5 倍 ( ) (2) 一个四边形的各边长扩大为原来的 9 倍,这个 四边形的面积也扩大为原来的 9 倍 ( ) 当堂练习当堂练习 3. 连接三角形两边中点的线段把三角形截成的一个 小三角形与原三角形的周长比等于_,面积 比等于_. 1 : 2 1 : 4 2. 在 ABC 和 DEF 中,AB2 DE,AC2 DF, AD,AP,D

10、Q 是中线,若 AP2,则 DQ 的值为 ( ) A2 B4 C1 D. C 2 1 4. 两个相似三角形对应的中线长分别是 6 cm 和 18 cm, 若较大三角形的周长是 42 cm,面积是 12 cm2,则 较小三角形的周长_cm,面积为_cm2. 14 4 3 5. 如图,这是圆桌正上方的灯泡 (点A) 发出的光线照 射桌面形成阴影的示意图,已知桌面的直径为 1.2 米,桌面距离地面为 1 米,若灯泡距离地面 3 米, 则地面上阴影部分的面积约为多少 (结果保留两位 小数)? A D E F C B H 解: FH = 1 米,AH = 3 米, 桌面的直径为 1.2 米, AF =

11、AHFH = 2 (米), DF = 1.22 = 0.6 (米). DFCH, ADF ACH, A D E F C B H DFAF CHAH , 即 0 62 3 . CH , 解得 CH = 0.9米. 阴影部分的面积为: 22 0.92.54CH(平方米). 答:地面上阴影部分的面积为 2.54 平方米. 6. ABC 中,DEBC,EFAB,已知 ADE 和 EFC 的面积分别为 4 和 9,求 ABC 的面积. A B C D F E 解: DEBC,EFAB, ADE ABC, ADE =EFC,A =CEF, ADE EFC. 又SADE : SEFC = 4 : 9, AE

12、 : EC=2:3, 则 AE : AC =2 : 5, SADE : SABC = 4 : 25, SABC = 25. 7. 如图,ABC 中,DEBC,DE 分别交 AB、AC 于 点 D、E,SADE2 SDCE,求 SADE SABC. 解:过点 D 作 AC 的垂线,交点为 F,则 1 2 2 1 2 ADE DCE AE DF SAE SEC EC DF , 2 3 AE . AC 又 DEBC, ADE ABC. A B C D E F 22 24 39 ADE ABC SAE SAC , 即 SADE : SABC 4 : 9. A B C D E F 相似三角形的性质 相似三角形对应线段的比等于 相似比 课堂小结课堂小结 相似三角形面积的比等于相似 比的平方 相似三角形性质的运用

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|