ImageVerifierCode 换一换
格式:PPTX , 页数:277 ,大小:9.59MB ,
文档编号:4747483      下载积分:32 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-4747483.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(晟晟文业)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(人教版数学九年级下册-第27章《相似图形》-整章优质课件.pptx)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

人教版数学九年级下册-第27章《相似图形》-整章优质课件.pptx

1、人教版人教版 数学数学 九九年级年级 下册下册导入新知导入新知导入新知导入新知导入新知导入新知我们刚才所见到的图形有什么联系?我们刚才所见到的图形有什么联系?其中一个图形可以看作是另一个图形放大或者缩小得到的.导入新知导入新知3.能根据多边形能根据多边形相似相似进行相关的计算。进行相关的计算。1.了解了解相似图形相似图形和和相似比相似比的概念的概念.2.理解理解相似多边形相似多边形的定义的定义.素养目标素养目标全等图形全等图形指能够完全重合的两个图形,观察观察即它们的形状和大小完全相同。探究新知探究新知知识点 1黄山松天坛观察观察两张黄山松、两张黄山松、两张天坛的照片两张天坛的照片有什么特点有

2、什么特点?探究新知探究新知【思考】【思考】这两张中国地图的照片有什么关系这两张中国地图的照片有什么关系?探究新知探究新知【想一想想一想】我们刚才所见到的图形有什么我们刚才所见到的图形有什么相同和不同的地方相同和不同的地方?相同点:不同点:形状相同大小不同探究新知探究新知 两个图形的形状 _,但图形的大小位置 _,这样的图形叫做相似图形。完全相同完全相同不一定相同不一定相同探究新知探究新知 归纳总结归纳总结图形的放大图形的放大探究新知探究新知图形的放大图形的放大探究新知探究新知图形的缩小图形的缩小两个图形两个图形相似相似探究新知探究新知 两个图形相似,其中一个图形可以看作由另一个图形放大或缩小得

3、到。相似图形的关系相似图形的关系探究新知探究新知【思考思考】你见过哈哈镜吗?哈哈镜与平面镜中的形象哪你见过哈哈镜吗?哈哈镜与平面镜中的形象哪一个与你本人相似?一个与你本人相似?探究新知探究新知1.在下列图形中,找出相似图形在下列图形中,找出相似图形.巩固练习巩固练习 下图是两个等边三角形,它们相似吗下图是两个等边三角形,它们相似吗?它们的对应角、它们的对应角、对应边分别有什么关系对应边分别有什么关系?BCABCAA=AB=BC=CCAACCBBCBAAB两个两个等边三角形相似等边三角形相似,它们的它们的对应角相等对应角相等,对应边成比例对应边成比例.探究新知探究新知观观察察与与思思考考知识点

4、2【思考】【思考】下图是两个正六边形,它们相似吗下图是两个正六边形,它们相似吗?它们的对它们的对应角、对应边分别有什么关系应角、对应边分别有什么关系?两个两个正六边形相似正六边形相似,它们的它们的对应角相等对应角相等,对应边成比例对应边成比例.从上述两个问题的探索中你能得到什么结论从上述两个问题的探索中你能得到什么结论?两个边数相等的正多边形相似,且对应角相等、对应边成比例.探究新知探究新知 任意两个相似三角形任意两个相似三角形,它们的对应角相等吗它们的对应角相等吗?对应对应边成比例吗边成比例吗?【结论结论】任意两个相似三角形,它们的对应角相等!对应边成比例!探究新知探究新知 图中两个四边形是

5、相似形,仔细观察这两个图形,它们的对图中两个四边形是相似形,仔细观察这两个图形,它们的对应边之间是否有以上的关系呢?对应角之间又有什么关系?应边之间是否有以上的关系呢?对应角之间又有什么关系?【结论结论】任意两个相似多边形,它们的对应角相等!对应边成比例!探究新知探究新知 各角分别相等、各边成比例的两个多边形叫做相似多边形.相似多边形的对应边的比叫作相似比.相似多边形的对应角相等,对应边成比例.相似比:相似多边形的特征:相似多边形的定义:归纳:归纳:探究新知探究新知【思考思考】任意的两个菱形(或矩形)是否相似?为什么?任意的两个菱形(或矩形)是否相似?为什么?探究新知探究新知 例例1 如图,四

6、边形如图,四边形 ABCD 和和 EFGH 相似,求角相似,求角,的的大小和大小和EH的长度的长度 x.DABC1821788324GEFHx118探究新知探究新知素养考点素养考点 1利用相似多边形的定义求线段、角的值利用相似多边形的定义求线段、角的值在四边形在四边形ABCD中,中,360(7883118)81.C83,AE118.解:解:四边形四边形 ABCD 和和 EFGH 相似,相似,它们的对应角相等由此可得它们的对应角相等由此可得DABC1821788324GEFHx118探究新知探究新知 四边形四边形ABCD和和EFGH相似,相似,它们的对应边它们的对应边成成比比例,例,由此可得由此

7、可得解得解得 x 28.242118xEHEFADAB,即即 .探究新知探究新知DABC1821788324GEFHx1182.如图所示的两个五边形相似,求未知边如图所示的两个五边形相似,求未知边a、b、c、d的的长度长度532cd7.5ba69巩固练习巩固练习解:解:相似多边形的对应边的比相等,由此可得相似多边形的对应边的比相等,由此可得7.535b67.55c97.55d7.525a ,解得:解得:a=3,b=4.5,c=4,d=6.所以未知边所以未知边a,b,c,d的长度分别为的长度分别为3,4.5,4,6.1.(2018重庆)制作一块重庆)制作一块3m2m长方形广告牌的成本是长方形广告

8、牌的成本是120元,元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的大为原来的3倍,那么扩大后长方形广告牌的成本是()倍,那么扩大后长方形广告牌的成本是()A360元元 B720元元 C1080元元 D2160元元连 接 中 考连 接 中 考巩固练习巩固练习C2.(2018重庆)要制作两个形状相同的三角形框架,其中一个重庆)要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为三角形的三边长分别为5cm,6cm和和9cm,另一个三角形的最短,另一个三角形的最短边长为边长为2.5cm,则它的最长边为(),则它的最长边

9、为()A3cm B4cm C4.5cm D5cmC连 接 中 考连 接 中 考巩固练习巩固练习D2.若一张地图的比例尺是若一张地图的比例尺是 1:150000,在地图上量得甲、乙两,在地图上量得甲、乙两地的距离是地的距离是 5cm,则甲、乙两地的实际距离是,则甲、乙两地的实际距离是()A.3000 m B.3500 m C.5000 m D.7500 mD 基 础 巩 固 题基 础 巩 固 题课堂检测1.下列说法正确的是下列说法正确的是 ()A小明上幼儿园时的照片和初中毕业小明上幼儿园时的照片和初中毕业 时的照片相似时的照片相似.B商店新买来的一副三角板是相似的商店新买来的一副三角板是相似的.

10、C所有的课本都是相似的所有的课本都是相似的.D国旗的五角星都是相似的国旗的五角星都是相似的.3.如图所示的两个矩形相似吗?为什么?如果相似,如图所示的两个矩形相似吗?为什么?如果相似,相似比是多少?相似比是多少?GFEH1.51ADCB32解:解:矩形矩形ABCD相似于矩形相似于矩形EFGH因为它们的对应角相等,对应边成比例因为它们的对应角相等,对应边成比例.相似比为相似比为:.:.课堂检测基 础 巩 固 题基 础 巩 固 题4.观察下面的图形观察下面的图形(a)(g),其中哪些是与图形其中哪些是与图形(1)、(2)或或(3)相似的相似的?基 础 巩 固 题基 础 巩 固 题课堂检测 判断下边

11、的两个多边形是否相似?判断下边的两个多边形是否相似?3正方形344菱形解解:正方形,菱形的四条边都相等正方形,菱形的四条边都相等.它们的对应边成比例,它们的对应边成比例,k=3:4.正方形的四个内角均为直角,正方形的四个内角均为直角,而菱形的内角有钝角有锐角而菱形的内角有钝角有锐角.它们的对应角不相等它们的对应角不相等.这一组图形这一组图形不相似不相似.课堂检测能 力 提 升 题能 力 提 升 题 如图,把矩形如图,把矩形 ABCD 对折,折痕为对折,折痕为 EF,若矩形,若矩形ABCD 与矩形与矩形 EABF 相似,相似,AB=1 ABCDEF解:解:E 是是 AD 的中点的中点,1122A

12、EADBC .又又矩形矩形 ABCD 与与矩形矩形 EABF相似,相似,AB=1,ABBCAEAB AB2=AEBC,.2112BCBC解得解得2.BC 拓 广 探 索 题拓 广 探 索 题课堂检测(1)求)求BC长;长;(2)求矩形求矩形 ABFE 与矩形与矩形 ABCD 的相似比的相似比.ABCDEF解:解:矩形矩形 ABEF 与矩形与矩形ABCD 的相似比为:的相似比为:12.22ABBC拓 广 探 索 题拓 广 探 索 题课堂检测相似图形相似图形形状相同的图形叫做形状相同的图形叫做相似图形相似图形 相似图形的大小不一定相同相似图形的大小不一定相同相似多边形对应边的比叫做相似多边形对应边

13、的比叫做相似比相似比对应角相等,对应边成比例对应角相等,对应边成比例图形的相似图形的相似相似多边形相似多边形课堂小结人教版人教版 数学数学 九九年级年级 下册下册平行线分线段成比例定理平行线分线段成比例定理 及其推论及其推论第一课时第一课时返回返回1.相似多边形的特征是什么?相似多边形的特征是什么?2.怎样判定两个多边形相似?怎样判定两个多边形相似?3.什么叫相似比?什么叫相似比?4.相似多边形中,最简单的就是相似三角形如果相似多边形中,最简单的就是相似三角形如果A A1,BB1,CC1,那么那么ABC与与A1B1C1相似吗?我们还有其他方法判定两个三角形相似吗?相似吗?我们还有其他方法判定两

14、个三角形相似吗?导入新知111111CBBCCAACBAABABCA1B1C11.理解理解相似三角形相似三角形的概念的概念,并会用以证明和计算并会用以证明和计算.2.体会用相似符号体会用相似符号“”“”表示的相似三角形之间的表示的相似三角形之间的边,角对应边,角对应关系关系.素养目标3.掌握掌握平行线分线段成比例平行线分线段成比例的基本事实及其推论的的基本事实及其推论的应用应用,会用平行线判定两个三角形相似并进行证明,会用平行线判定两个三角形相似并进行证明和计算和计算.请分别度量请分别度量l3,l4,l5.在在l1 上截得的两条线段上截得的两条线段AB,BC和在和在l2 上截得上截得的两条线段

15、的两条线段DE,EF的长度的长度,AB:BC与与DE:EF相等吗?任意平移相等吗?任意平移l5,再量度再量度AB,BC,DE,EF的长度的长度,它们的比值还相等吗?它们的比值还相等吗?猜想猜想ABCDEFl2探究新知l1除此之外,还除此之外,还有其他对应线段有其他对应线段成比例吗?成比例吗?l2l3l4l5知识点 1平行线分线段成比例定理平行线分线段成比例定理233432BCAB若若 ,那么那么?EFDE若若 ,那么那么43BCAB?EFDE即即ABDEBCEF事实上,当事实上,当l3/l4/l5时,都可以得到时,都可以得到 ,还可以得到还可以得到 ,等等.ABCDEFl3l4l5l1l2EF

16、DEBCABDEEFABBCDFDEACABDFEFACBC 通过探究,你通过探究,你得到了什么规律呢?得到了什么规律呢?探究新知 一般地,我们有平行线分线段成比例的基本事实:两条直线被一组平行线所截,所得的对应线段成比例.符号语言:若ab c,则 ,12122323A AB BA AB B 归纳:归纳:A1A2A3B1B2B3bc23231212A AB BA AB B12121313A AB BA AB B,23231313A AB BA AB Ba探究新知1.如何理解如何理解“对应线段对应线段”?2.“.“对应线段对应线段”成比例都有哪些表达形式?成比例都有哪些表达形式?【想一想想一想】

17、探究新知1.如图,已知如图,已知l1l2l3,下列比例式中错误的是下列比例式中错误的是()()A.B.C.D.DFBDCEACBFBDAEACC ED FA EB FACBDBFAE DACEBDFl2l1l3巩固练习巩固练习 如图,直线l3l4l5,由平行线分线段成比例的基本事实,我们可以得出图中对应成比例的线段,ABCDEFl4l5l1l2l3把直线 l1向左或向右任意平移,这些线段依然成比例.探究新知知识点 2平行线分线段成比例定理的推论平行线分线段成比例定理的推论【思考思考】如果把图如果把图1中中l1,l2两条直线相交,交点两条直线相交,交点A刚刚好落到好落到l3上,如图上,如图2(1

18、),),所得的对应线段的比会所得的对应线段的比会相等吗?依据是什么?相等吗?依据是什么?ABCDEFl3l4l5l1l2探究新知图1图2(1)A(D)EFCB【思考思考】如果把图如果把图1中中l1,l2两条直线相交,交点两条直线相交,交点A刚好落到刚好落到l4上,如图上,如图2(2)所得的对应线段的比会所得的对应线段的比会相等吗?依据是什么?相等吗?依据是什么?探究新知图1 1图2 2(2 2)ABCDEFl3l4l5l1l2BCEADl1l2l3l4l5l2l3l1l3 平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例.ABCDEl2ABCDEl1探究新知 归纳:归纳:

19、巩固练习巩固练习2.如图如图,l1l2l3,DE6,求,求DF的长的长23BCAB解:解:l1l2l3,.又又 ,DE6,解得解得EF4.DFDEEF6410.EFDEBCAB23BCAB236EFl1l2l3 例例1 如图,在如图,在ABC中中,DEBC,AC=4,AB=3,EC=1.求求AD和和BD.AE=3.解:解:AC=4,EC=1,DEBC,AD=2.25,BD=0.75.ACAEABAD探究新知探究新知素养考点素养考点 1利用平行线分线段成比例定理及推论求线段利用平行线分线段成比例定理及推论求线段3.如图,在如图,在ABC中中,EFBC,AE=2cm,BE=6cm,FC=3cm,A

20、F的长为的长为_ 1cm巩固练习巩固练习 如图,在如图,在ABC中,中,D为为AB上任意一点,过点上任意一点,过点D作作BC的平行线的平行线DE,交,交AC于点于点E.问题问题1 ADE与与ABC的三个角分别相等吗?的三个角分别相等吗?问题问题2 分别度量分别度量ADE与与ABC的边长,它们的边的边长,它们的边 长是否对应成比例?长是否对应成比例?BCADE探究新知探究新知知识点 3问题问题3 你认为你认为ADE与与ABC之间有什么关系?平行移动之间有什么关系?平行移动DE的位置,你的结论还成立吗?的位置,你的结论还成立吗?通过度量,我们发现通过度量,我们发现ADEABC,且只要且只要DEBC

21、,这个结论恒成立这个结论恒成立.探究新知探究新知BCADE 【思考思考】1.我们通过度量三角形的边长,知道我们通过度量三角形的边长,知道ADE ABC,但要用相似的定义去证明它,我们需要证明什么?,但要用相似的定义去证明它,我们需要证明什么?2.由前面的结论,我们可以得到由前面的结论,我们可以得到什么?还需证明什么?什么?还需证明什么?探究新知探究新知用相似的定义证明ADEABCBCADEABCDE证明证明:在在ADE与与ABC中,中,A=A DE/BCADE=B,AED=C,过过E作作EF/AB交交BC于于F,四边形四边形DBFE是平行四边形是平行四边形FDE=BFADEABC探究新知探究新

22、知ADAEABACAEBFACBCBCDEACAEA DA ED EA BA CB C则则已知:如图已知:如图,在,在ABC中,中,DE/BC,且且DE分别交分别交AB,AC于点于点D、E 求证:求证:ADEABC.“A”型“X”型(图2)DEOBCABCDE(图1)探究新知探究新知定理:定理:平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似.符号语言:DE/BCADEABC【讨论讨论】过点过点D作与作与AC平行的直线与平行的直线与BC相交,可否证相交,可否证明明ADEABC?如果在三角形中出现一边的平行?如果在三角形中出现一边的平行线,那么你应该联想到什么?线,那么你应该联

23、想到什么?【方法总结方法总结】过点D作与AC平行的直线与BC相交,仍可证明ADEABC,这与教材第31页证法雷同题目中有平行线,可得相似三角形,然后利用相似三角形的性质,可列出比例式 探究新知探究新知4.已知:如图,已知:如图,ABEFCD,图中共有图中共有_对相似三角形对相似三角形.3CDABEFO相似具有传递性巩固练习巩固练习连 接 中 考巩固练习 (2018临安区)如图,在临安区)如图,在ABC中,中,DEBC,DE分别与分别与AB,AC相交于点相交于点D,E,若,若AD=4,DB=2,则则DE:BC的值的值为()为()A B C DA322143531.如图,在如图,在 ABC 中,中

24、,EFBC,AE=2cm,BE=6cm,BC=4 cm,EF 长(长()AA.1cm B.cm C.3cm D.2cmABCEF43课堂检测基 础 巩 固 题基 础 巩 固 题2.如图如图,DEBC,;FGBC,则则 .ABAD52ACAE25ABCEDFG2CGAGABAF23课堂检测基 础 巩 固 题基 础 巩 固 题3.如图,在如图,在ABC中,中,EFBC.(1)如果)如果E、F分别是分别是 AB 和和 AC 上的点,上的点,AE=BE=7,FC=4 ,那么,那么 AF 的长是多少?的长是多少?ABCEF解:解:AEAFBEFC,774A F,解得解得 AF=4.课堂检测基 础 巩 固

25、 题基 础 巩 固 题(2)如果如果AB=10,AE=6,AF=5,那么,那么 FC 的长是多少?的长是多少?解:解:AEAFABAC,6510AC,基 础 巩 固 题基 础 巩 固 题解得解得 .325AC3105325AFACFCABCEF课堂检测 如图所示,如果如图所示,如果D,E,F分别在分别在OA,OB,OC上,上,且且DFAC,EFBC 求证:求证:OD OAOE OB .ODOFOAOCOFOEOCOB,.ODOEOAOB证明:证明:DFAC,EFBC,课堂检测能 力 提 升 题能 力 提 升 题 如图,已知菱形如图,已知菱形 ABCD 内接于内接于AEF,AE=5cm,AF=4

26、 cm,求菱形的边长,求菱形的边长.解:解:四边形四边形 ABCD 为菱形,为菱形,BCADEFCDAB,.CDDFAEAF设菱形的边长为设菱形的边长为 x cm,则,则CD=AD=x cm,DF=(4x)cm,解得解得 菱形的边长为菱形的边长为 cm.454xx,209课堂检测拓 广 探 索 题拓 广 探 索 题920 x两条直线被一组平行线所截,所得的对应线段成比例.推论平行于三角形一边的直线截其他两边(或两边延长线),所得的对应线段成比例.相似三角形判定的引理平行于三角形一边的直线与其他两边相交,所构成的三角形与原三角形相似.基本事实平行线分线段成比例课堂小结第二课时第二课时返回返回AB

27、CDEDEOBC 学习三角形全等时,我们知道,除了可以通过证明对应学习三角形全等时,我们知道,除了可以通过证明对应角相等对应边相等来判定两个三角形全等外,还有判定的角相等对应边相等来判定两个三角形全等外,还有判定的简便方法(简便方法(SSS、SAS、ASA、AAS)类似地,判定两个)类似地,判定两个三角形相似时,是不是也存在简便的判定方法呢?三角形相似时,是不是也存在简便的判定方法呢?类似于判定三角形全等的类似于判定三角形全等的SSS方法,我们能不能通过三边方法,我们能不能通过三边来判断两个三角形相似呢?来判断两个三角形相似呢?探究探究!讨论一下?导入新知导入新知2.会运用会运用“三组对应边的

28、比相等的两个三角形相似三组对应边的比相等的两个三角形相似”判定两个三角形相似,并能进行相关计算与推理判定两个三角形相似,并能进行相关计算与推理.1.复习已经学过的复习已经学过的三角形相似的判定定理三角形相似的判定定理 .素养目标素养目标1.定义法定义法:对应角相等对应角相等,对应边的比相等对应边的比相等的两个三角形相似的两个三角形相似.如何判断两个三角形是否相似如何判断两个三角形是否相似?DEBC ADE ABC DEABCABCDE2.平行法平行法:平行于平行于三角形一边的直线和其他两边三角形一边的直线和其他两边(或两边的延长线)相或两边的延长线)相交,所构成的三角形与原三角形相似交,所构成

29、的三角形与原三角形相似.A型型X型型探究新知探究新知知识点 1还有没有其还有没有其他简单的判他简单的判断方法呢?断方法呢?ABBCACABBCAC 是否有是否有ABCABC?ABC三边对应成比例探究新知探究新知CBAABCCBA 通过测量不难发现A=A,B=B,C=C,又因为两个三角形的边对应成比例,所以 ABC ABC.下面我们用前面所学的定理证明该结论.探究新知探究新知已知已知:如图,在如图,在ABC和和ABC中,中,AB:AB=AC:AC=BC:BC.求证求证:ABCABC证明证明:在在ABC的边的边AB(或延长线或延长线)上截取上截取AD=AB,ABCABCDE过点过点D作作DEBC交

30、交AC于点于点E.又又AB:AB=BC:BC=CA:CAAD:AB=AE:AC=DE:BC,ADEABC AD=ABAD:AB=AB:ABDE:BC=BC:BC,EA:CA=CA:CA.因此因此DE=BC,EA=CA.ABCABCADE ABC探究新知探究新知由此我们得到利用三边判定三角形相似的定理:三边成比例的两个三角形相似归纳:归纳:ACCACBBCBAAB ,ABC ABC.符号语言:探究新知探究新知【讨论讨论】在用三边的比判定两个三角形相似时,如何寻在用三边的比判定两个三角形相似时,如何寻找对应边?找对应边?【方法点拨】利用三边的比判定两个三角形相似时,应先将两个三角形的三边按大小顺序

31、排列,然后分别计算它们对应边的比,最后由比值是否相等来确定两个三角形是否相似 探究新知探究新知 例例1 已知已知AB=4 cm,BC=6 cm,AC=8 cm,AB=12 cm,BC=18 cm,AC=24 cm,试说明,试说明ABC ABC.ABC ABC 探究新知探究新知素养考点素养考点 1利用三边成比例判断三角形相似利用三边成比例判断三角形相似解:解:61183B CB C41123A BA B81243ACACA BB CA CA BB CA C 探究新知探究新知 方法点拨 判定三角形相似的方法之一:如果题中给出了两个三角形的三边的长,分别算出三条对应边的比值,看是否相等,计算时最大边

32、与最大边对应,最短边与最短边对应.1.在在ABC和和DEF中中,如果如果AB4,BC3,AC6;DE2.4,EF1.2,FD1.6,那么这两个三角形能否相似的那么这两个三角形能否相似的结论是结论是_,理由是,理由是_2.如图,在大小为如图,在大小为44的正方形网格中,是相似三角形的正方形网格中,是相似三角形的是(的是()相似相似C三组对应边的比相等三组对应边的比相等巩固练习A.和和 B.和和 C.和和 D.和和 例例2 如图,在如图,在 RtABC 与与 RtABC中中,C=C =90,且且 求证:求证:ABCABC.12A BA C.ABAC 证明:证明:由已知条件得由已知条件得 AB=2

33、AB,AC=2 AC,BC 2=AB 2AC 2=(2 AB)2(2 AC)2=4 AB 24 AC 2 =4(AB 2AC 2)=4 BC 2 =(2 BC)2.ABCABC.BC=2BC,1.2B CA BA CBCABAC探究新知探究新知素养考点素养考点 2判断三角形相似判断三角形相似3.如图,如图,ABC中,点中,点 D,E,F 分别是分别是 AB,BC,CA的中点,求证:的中点,求证:ABCEFD ABCEFD.证明:证明:ABC中,点中,点D,E,F分别是分别是AB,BC,CA的中点,的中点,111=222DEACDFBCEFAB,1=2DEDFEFACBCAB=,巩固练习试说明试

34、说明BAD=CAE.ADCEBABCADEBAC=DAEBACDAC=DAEDAC即BAD=CAE.ABBCACADDEAE例例3 如图已知:如图已知:.ABBCACADDEAE解:解:探究新知探究新知素养考点素养考点 3利用三角形相似求角相等利用三角形相似求角相等解:解:相等的角有相等的角有BAC=DAE,B=ADE,C=E,BAD=CAE.理由如下:理由如下:在在 ABC 和和 ADE 中中,AB:AD=BC:DE=AC:AE,ABCADE,BAC=DAE,B=ADE,C=E.BACCAD=DAECAD,BAD=CAE.故图中相等的角有故图中相等的角有BAC=DAE,B=ADE,C=E,B

35、AD=CAE.4.如图,已知如图,已知 AB:AD=BC:DE=AC:AE,找出图中相等的角找出图中相等的角 (对顶角除外对顶角除外),并说明你的理由,并说明你的理由.ABCDE巩固练习(2018临安临安)如图,小正方形的边长均为如图,小正方形的边长均为1,则下列图中的三则下列图中的三角形(阴影部分)与角形(阴影部分)与ABC相似的是相似的是()A B C D 连 接 中 考连 接 中 考巩固练习巩固练习B1下列各组三角形一定相似的是(下列各组三角形一定相似的是()A两个直角三角形两个直角三角形 B两个钝角三角形两个钝角三角形C两个等腰三角形两个等腰三角形 D两个等边三角形两个等边三角形D2.

36、下列判断,不正确的是(下列判断,不正确的是()A两条直角边分别是两条直角边分别是3、4和和6、8的两个直角三角形相似的两个直角三角形相似.B斜边长和一条直角边长分别是斜边长和一条直角边长分别是 、4和和 、2的两个直角三角形相似的两个直角三角形相似.C两条边长分别是两条边长分别是7、4和和14、8的两个直角三角形相似的两个直角三角形相似.D斜边长和一条直角边长分别是斜边长和一条直角边长分别是5、3和和2.5、1.5的两个直角三角形相似的两个直角三角形相似.525C课堂检测基 础 巩 固 题基 础 巩 固 题3.如图如图,APD=90,AP=PB=BC=CD,下列结论正确下列结论正确的是(的是(

37、)A.PABPCA B.PABPDA C.ABCDBA D.ABCDCA ACBPDC课堂检测基 础 巩 固 题基 础 巩 固 题4.判断图中的两个三角形是否相似,并说明理由判断图中的两个三角形是否相似,并说明理由ABC33.54DFE1.82.12.4课堂检测基 础 巩 固 题基 础 巩 固 题解:解:在在 ABC 中中,AB BC CA,在在 DEF中中,DE EF FD.DEF ABC.2.40.64DEAB ,2.10.63.5EFBC1.80.63FDCADEEFFDABBCCA .课堂检测课堂检测基 础 巩 固 题基 础 巩 固 题DFE1.82.12.4ABC33.54 要制作两

38、个形状相同的三角形框架,其中一个三角形框架的三要制作两个形状相同的三角形框架,其中一个三角形框架的三边长分别为边长分别为4、5、6,另一个三角形框架的一边长为,另一个三角形框架的一边长为2,它的另外两,它的另外两条边长应当是多少?你有几个答案?条边长应当是多少?你有几个答案?方案方案(1)解:解:设另外两条边长分别为设另外两条边长分别为x,y方案方案(2)方案方案(3)课堂检测能 力 提 升 题能 力 提 升 题15,522xx1,362yy21421k28,455xx212,655yy522k14,433xx15,533yy3162k3 如图,某地四个乡镇如图,某地四个乡镇 A,B,C,D

39、之间建有公路,之间建有公路,已知已知 AB=14 千米,千米,AD=28 千米千米,BD=21 千米千米,DC=31.5 千米,公路千米,公路 AB 与与 CD 平行吗?说出你的理由平行吗?说出你的理由.ACBD2814214231.5解:解:公路公路 AB 与与 CD 平行平行.2=3ABADBDBDBCDC=,ABDBDC,ABD=BDC,ABDC.课堂检测拓 广 探 索 题拓 广 探 索 题三边三边成比成比例两例两个三个三角形角形相似相似 利用利用三边三边判定两个三角形相似判定两个三角形相似相似三角形的判定定理的相似三角形的判定定理的运用运用 课堂小结课堂小结第三课时返回返回BACBAC

40、1.两个三角形全等有哪些判定方法?两个三角形全等有哪些判定方法?2.我们学习过哪些判定三角形相似的方法?我们学习过哪些判定三角形相似的方法?SSS、SAS、ASA、AAS、HL(1)通过通过定义定义(三边对应成比例,三角分别相等)(三边对应成比例,三角分别相等)(2)平行平行于三角形一边的直线于三角形一边的直线(3)三边对应成比例三边对应成比例导入新知导入新知 类似于判定三角形全等的类似于判定三角形全等的SAS方法,我们能不方法,我们能不能通过两边和夹角来判断两个三角形相似呢?能通过两边和夹角来判断两个三角形相似呢?探究导入新知导入新知1.探索探索“两边成比例且夹角相等两边成比例且夹角相等的两

41、个三的两个三角形相似角形相似”的判定定理并且会运用的判定定理并且会运用.2.会运用会运用“两边成比例且夹角相等两边成比例且夹角相等”判定判定两个三角形相似两个三角形相似,并进行相关计算与推理,并进行相关计算与推理.素养目标素养目标改变改变A或或k值的大小,再试一试,是否有同样的结论?值的大小,再试一试,是否有同样的结论?实际上,我们有利用两边和夹角判定两个三角形相似的方法实际上,我们有利用两边和夹角判定两个三角形相似的方法.等于等于kB=B C=C改变改变k的值具有相同的结论的值具有相同的结论 利用刻度尺和量角器画利用刻度尺和量角器画ABC和和ABC,使使AA,量出它们第三组对应边量出它们第三

42、组对应边BC和和BC的长,它们的比的长,它们的比等于等于k吗?另外两组对应角吗?另外两组对应角B与B,C与C是否相等?是否相等?ABACk.A BAC探究新知探究新知知识点 1ABCABCABACkA BA CAA 如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似 类似于证明通过三边判定三角形相似的方法,我们试证明这个结论 ABC ABC探究新知探究新知已知:如图,已知:如图,ABC和和 ABC中中,A=A,AB:AB=AC:AC求证:求证:ABC ABC 证明:证明:在在ABC 的边的边AB、AC(或它们的延长线)上分别截取(或它们的延长线)上分别截取ADAB,A

43、EAC,连结连结DE,因因A =A,这样这样ABC ADE ADAEABAC DE/BC ADE ABC ABC ABC A BA CABACABCABCDE探究新知探究新知 由此得到利用两边和夹角来判定三角形相似的定理:两边成比例且夹角相等的两个三角形相似符号语言:A=A,ABACA BAC,BACBAC ABC ABC .归纳:归纳:探究新知探究新知【思考思考】对于对于ABC和和 ABC,如果如果 AB:AB=AC:AC.C=C,这两个三角形一定会相似吗?这两个三角形一定会相似吗?不一定,如下图,因为能构造符合条件的三角形有两个,不一定,如下图,因为能构造符合条件的三角形有两个,其中一个和

44、原三角形相似,另一个不相似其中一个和原三角形相似,另一个不相似.A B C A B B C探究新知探究新知探究新知探究新知 归纳总结归纳总结 如果两个三角形两边对应成比例,但相等的角不是两条对应边的夹角,那么两个三角形不一定相似,相等的角一定要是两条对应边的夹角.已知已知A120,AB7cm,AC14cm,A120,AB 3cm,AC 6cm,判断判断ABC与与 ABC是否相似,并说是否相似,并说明理由明理由.7147363ABACA BA C,又又 AA ABCABC例例1探究新知探究新知素养考点素养考点 1两三角形两三角形的相似比的相似比是多少?是多少?ABCABC .理由如下:理由如下:

45、解解:A BA CA BA C 1.已知已知A=40,AB=8,AC=15,A=40,AB=16,AC=30,判断判断ABC与与ABC是否相似,是否相似,并说明理由并说明理由.解:解:ABCABC巩固练习ABCABC.理由如下:理由如下:A=A又又151302ACAC解:解:AE=1.5,AC=2,ACBED例例2 如图,如图,D,E分别是分别是 ABC 的边的边 AC,AB 上的点,上的点,AE=1.5,AC=2,BC=3,且,且 ,求,求 DE 的长的长.34ADAB34AEAD.ACAB又又EAD=CAB,ADE ABC,34DEADBCAB,3944DEBC.探究新知探究新知素养考点素

46、养考点 2提示:提示:解题时要找准对应边.2.如图,在如图,在ABC 中,中,ACBC,D 是边是边AC 上一点,连接上一点,连接BD(1)要使)要使CBDCAB,还需要补充一个条件是还需要补充一个条件是;(只要求填一个(只要求填一个)(2)若若CBDCAB,且且AD2,,求求CD 的长的长巩固练习ABCD解解:(1)CD:CBBC:AC(2)设)设CDx,则则CAx2当当CBDCAB,且且AD2,,有有CD:CBBC:AC,即即 ,所以所以x2x30解得解得x1,x3但但x3不符合题意不符合题意,应舍去应舍去所以所以CD13BC 3BC:33:2xx()证明:证明:CD 是边是边 AB 上的

47、高上的高,ADC=CDB=90.ADC CDB,ACD=B,ACB=ACD+BCD=B+BCD=90.ABCD例例3 如图,如图,在在 ABC 中中,CD 是边是边 AB 上的高上的高,且且 ,求证求证:ACB=90=ADCDCDBD ADCDCDBD,探究新知探究新知素养考点素养考点 3方法总结:方法总结:解题时需注意隐含条件,如垂直关系,三角形的高等.3.如图,已知在如图,已知在ABC 中,中,C90,D、E 分别分别是是AB、AC 上的点,上的点,AE:ADAB:AC试问试问:DE 与与AB 垂直吗垂直吗?为什么为什么?ABCDE证明:证明:DEAB理由如下理由如下:AE:ADAB:AC

48、,又又AA,ABCAED ADEC90 DE 与与AB 垂直垂直=A EA DA BA C巩固练习1.(2017同仁同仁)如图,已知:如图,已知:BAC=EAD,AB=20.4,AC=48,AE=17,AD=40求证:求证:ABCAED连 接 中 考巩固练习证明:证明:AB=20.4,AC=48,AE=17,AD=40 BAC=EAD,ABCAED20.41.217ABAE481.240ACADADACAEAB ,1.如图如图,D 是是 ABC 一边一边 BC 上一点,连接上一点,连接 AD,使使ABC DBA的条件是的条件是 ()A.AC:BC=AD:BD B.AC:BC=AB:AD C.A

49、B2=CD BC D.AB2=BD BCDABCDABBCBDAB课堂检测基 础 巩 固 题基 础 巩 固 题2.在在 ABC 和和 DEF 中中,C=F=70,AC=3.5 cm,BC=2.5 cm,DF=2.1 cm,EF=1.5 cm.求证求证:DEFABC.ACBFED证明:证明:AC=3.5 cm,BC=2.5 cm,DF=2.1 cm,EF=1.5 cm,又又 C=F=70,DEF ABC.35DFEF.ACBC课堂检测基 础 巩 固 题基 础 巩 固 题3.如图如图,ABC 与与 ADE 都是等腰三角形都是等腰三角形,AD=AE,AB=AC,DAB=CAE.求证:求证:ABC A

50、DE.证明:证明:AD=AE,AB=AC,ADAE.ABAC又又 DAB=CAE,DAB+BAE=CAE+BAE,即即 DAE=BAC,ABC ADE.ABCDE课堂检测基 础 巩 固 题基 础 巩 固 题 如图,在四边形如图,在四边形 ABCD 中中,已知已知 B=ACD,AB=6,BC=4,AC=5,求求 AD 的长的长ABCD解:解:AB=6,BC=4,AC=5,45ABBC.CDAC又又B=ACD,ABC DCA,45ACBCADAC ,254AD.课堂检测能 力 提 升 题能 力 提 升 题217CD217CD 如图,在如图,在ABC中,中,D,E分别是分别是AB,AC上的点,上的点

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|