1、 第 1 页(共 6 页) 2.52.5 一元一次不等式与一次函数一元一次不等式与一次函数 第二课时第二课时 一、选择题一、选择题 1如图是一次函数ykx+b的图象,当y2 时,x的取值范围是( ) Ax1 Bx1 Cx3 Dx3 2直线l1:yk1x+b与直线l2:yk2x在同一平面直角坐标系中的图象如图所 示,则关于x的不等式k1x+bk2x的解为( ) Ax1 Bx1 Cx2 D无法确定 3两个物体A,B所受压强分别为PA(帕)与PB(帕) (PA,PB为常数) ,它们所 受压力F(牛)与受力面积S(平方米)的函数关系图象分别是射线LA,LB, 如图所示,则( ) APAPB BPAPB
2、 CPAPB DPAPB 4一次函数ykx+b的图象如图所示,当y0 时,x的取值范围是( ) Ax0 Bx0 Cx2 Dx2 二、填空题二、填空题 5已知y13x+2,y2x5,如果y1y2,则x的取值范围是 6当a取 时,一次函数y3x+a+6 与y轴的交点在x轴下方 (在横线 上填上一个你认为恰当的数即可) 7 已知一次函数y (a+5)x+3 经过第一, 二, 三象限, 则a的取值范围是 8一次函数ykx+2 中,当x时,y0,则y随x的增大而 9当x取 时,一次函数y2x+7 的函数值为负数 (在横线上填上一 (第 1 题图) (第 2 题图) (第 3 题图) (第 4 题图) 第
3、 2 页(共 6 页) 个你认为恰当的数即可) 三、解答题三、解答题 10x为何值时,一次函数y2x+3 的值小于一次函数y3x5 的值? (1)一变:x为何值时,一次函数y2x+3 的值等于一次函数y3x5 的 值; (2)二变:x为何值时,一次函数y2x+3 的图象在一次函数y3x5 的 图象的上方? (3)三变:已知一次函数y12x+a,y23x5a,当x3 时,y1y2,求 a的取值范围 11我边防局接到情报,在离海岸 5 海里处有一可疑船只A正向公海方向行驶, 边防局迅速派出快艇B追赶,图中l1、l2分别表示两船相对于海岸的距离s (海里)与追赶时间t(min)之间的关系 (1)A、
4、B对应的图象是坐标系中的哪一条线? (2)快艇B至少要多少时间才能追上可疑船只A? 第 3 页(共 6 页) 12某工厂生产某种产品,每件产品的出厂价为 1 万元,其原材料成本价(含设 备损耗等)为 0.55 万元,同时在生产过程中平均每生产一件产品有 1 吨的废 渣产生为达到国家环保要求,需要对废渣进行脱硫、脱氮等处理,现有两 种方案可供选择: 方案一:由工厂对废渣直接进行处理,每处理 1 吨废渣所用的原料费为 0.05 万元,并且每月设备维护及损耗费为 20 万元; 方案二:工厂将废渣集中到废渣处理厂统一处理,每处理 1 吨废渣需付 0.1 万元的处理费 (1)设工厂每月生产x件产品,每月
5、利润为y万元,分别求出方案一和方案 二处理废渣时,y与x之间的函数关系式; (利润总收入总支出) (2)若你作为工厂负责人,如何根据月生产量选择处理方案,既可达到环保 要求又最合算 第 4 页(共 6 页) 2.52.5 一元一次不等式与一次函数一元一次不等式与一次函数 第二课时第二课时参考答案与试题解析参考答案与试题解析 一、选择题一、选择题 1【分析】从图象上得到函数的增减性及当y2 时,对应的点的横坐标,即 能求得当y2 时,x的取值范围 【解答】解:一次函数ykx+b经过点(3,2) ,且函数值y随x的增大而增 大, 当y2 时,x的取值范围是x3 故选:C 2 【分析】求关于x的不等
6、式k1x+bk2x的解集就是求:能使函数yk1x+b 的图象在函数yk2x的上方的自变量的取值范围 【解答】解:能使函数yk1x+b的图象在函数yk2x的上方时的自变量的取 值范围是x1 故关于x的不等式k1x+bk2x的解集为:x1 故选:B 3 【分析】这是一道学科综合题压强P,由图象知受力面积相同时压力 FBFA,故有PAPB 【解答】解:由图象知受力面积相同时压力FBFA,故选A 4 【分析】根据函数图象可知,此函数为减函数,图象与x轴的交点坐标为 (2,0) ,由此可得出答案 【解答】解:根据图象和数据可知,当y0 即直线在x轴下方时,x的取值 范围是x2 故选:C 二、填空题二、填
7、空题 5 【分析】如果y1y2,应有 3x+2x5,解不等式即可 【解答】解:y1y2,即 3x+2x5, 解得:x,即x的取值范围是x 故本题答案为:x 6 【分析】一次函数y3x+a+6 与y轴的交点坐标即为x0 时y的值,要使一 次函数y3x+a+6 与y轴的交点在x轴下方,只要此时y0 即可 【解答】解:一次函数y3x+a+6 中令x0,解得ya+6, 由于交点在x轴下方,得到a+60, 解得a6, 因而横线上填上一个小于6 的数就可以 故本题答案为:7 7 【分析】已知一次函数y(a+5)x+3 经过第一,二,三象限,则得到a+5 0,求解即可 【解答】解:由于一次函数y(a+5)x
8、+3 经过第一,二,三象限 a+50 第 5 页(共 6 页) 解得a5 故本题答案为:a5 8 【分析】由当x时,y0 得到k的取值范围,从而由一次函数的图象的性 质得到函数的增减性 【解答】解:y0,即kx+20, 解得:kx2, 根据题意得到不等式的解集是:x, 得到k0, 一次函数ykx+2 中,y随x的增大而减小 故本题答案为:减小 是解决本题的关键 9 【分析】根据题意列出关于x的不等式,求出x的值即可 【解答】解:一次函数y2x+7 的函数值为负数, 2x+70,解得x, x可以等于 4(答案不唯一) 故答案为:4(答案不唯一) 三、解答题三、解答题 10【分析】根据一次函数y2
9、x+3 的值小于一次函数y3x5 的值得到 2x+33x5,然后解不等式得到x得取值范围; (1)根据题意得到2x+33x5,然后解方程即可; (2)根据题意得到2x+33x5,然后解不等式即可; (3)把x3 代入两解析式得到y16+a,y295a,再利用y1y2得到关 于a的不等式,然后解不等式即可 【解答】解:由题意得2x+33x5,即5x8,解的x; (1)由题意得2x+33x5,即5x8,解得x; (2)由题得2x+33x5,即5x8,解得x; (3)当x3 时,y16+a,y295a,因为y1y2,所以6+a95a, 即 6a15,解得a 11 【分析】 (1)依题意快艇B追赶船只
10、A,故船只B的路程比快艇A长,故 船只A对应l2,快艇A对应l1 (2) 分别设l1为sk1t,l2为sk2t+b 把已知坐标代入求出各个解析式 然 后把l1,l2的解析式列为方程组求出t,s即可 【解答】 解:(1)A对应l2,B对应l1 (2 分) (2)设l1:sk1t(k10) 当t10 时s5,10k15, 第 6 页(共 6 页) ,因此 (3 分) 设l2:sk2t+b 当t10 时s7,当t0 时s5, 解得 (5 分) 解方程组得 (7 分) 答: 至少要min, 快艇B才能追上可疑船只A (8 分) 12 【分析】 (1)方案一的等量关系是:利润产品的销售价成本价处理 废渣
11、的费用设备的维护和损耗的费用,方案二的等量关系是:利润产品 的销售价成本价处理废渣的费用可根据这两个等量关系来列出关于利 润和产品件数之间的函数关系式; (2)可将(1)中得出的关系式进行比较,判断出不同的自变量的取值范围 内哪个方案最省钱 【解答】解: (1)因为工厂每月生产x件产品,每月利润为y万元,由题意 得: 选择方案一时,月利润为y1x0.55x0.05x200.4x20(x50) , 选择方案二时,月利润为y2x0.55x0.1x0.35x(x0) ; (2)若y1y2,即 0.4x200.35x, 解得x400, 则当月生产量大于 400 件时,选择方案一所获得利润较大; 则当月生产量等于 400 件时,两种方案所获得利润一样大; 则当月生产量小于 400 件时,选择方案二所获得利润较大
侵权处理QQ:3464097650--上传资料QQ:3464097650
【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。