1、3.1.3空间向量的数量积运算 双基达标(限时20分钟)1对于向量a、b、c和实数,下列命题中的真命题是 ()A若ab0,则a0或b0B若a0,则0或a0C若a2b2,则ab或abD若abac,则bc解析对于A,可举反例:当ab时,ab0;对于C,a2b2,只能推得|a|b|,而不能推出ab;对于D,abac可以移项整理推得a(bc)答案B2如图,已知空间四边形每条边和对角线长都等于a,点E、F、G分别是AB、AD、DC的中点,则下列向量的数量积等于a2的是 ()A2B2C2D2解析2a2,故A错;2a2,故B错;2a2,故D错,只有C正确答案C3空间四边形OABC中,OBOC,AOBAOC,
2、则cos,的值为 ()A. B. C D0解析因为()|cos,|cos,又因为,|,所以0,所以,所以cos,0.答案D4已知a,b是空间两个向量,若|a|2,|b|2,|ab|,则cosa,b_解析将|ab|化为(ab)27,求得ab,再由ab|a|b|cosa,b求得cosa,b.答案5已知空间向量a,b,c满足abc0,|a|3,|b|1,|c|4,则abbcca的值为_解析abc0,(abc)20,a2b2c22(abbcca)0,abbcca13.答案136已知长方体ABCDA1B1C1D1中,ABAA12,AD4,E为侧面AA1B1B的中心,F为A1D1的中点求下列向量的数量积:
3、(1);(2)解如图所示,设a,b,c,则|a|c|2,|b|4,abbcca0.(1)()b(ca)b|b|24216.(2)()()(cab)(ac)|c|2|a|222220.综合提高(限时25分钟)7已知在平行六面体ABCDA1B1C1D1中,同一顶点为端点的三条棱长都等于1,且彼此的夹角都是60,则此平行六面体的对角线AC1的长为 ()A. B2 C. D.解析:2()22222221112(cos 60cos 60cos 60)6,|.答案:D8已知a,b是异面直线,A、Ba,C、Db,ACb,BDb,且AB2,CD1,则a与b所成的角是 ()A30 B45 C60 D90解析()
4、|2|21,cos,a与b的夹角为60.答案C9已知|a|3,|b|4,mab,nab,a,b135,mn,则_解析由mn,得(ab)(ab)0,a2(1)abb20,18(1)34cos 135160,即460,.答案10如图,已知正三棱柱ABCA1B1C1的各条棱长都相等,M是侧棱CC1的中点,则异面直线AB1和BM所成的角的大小是_解析不妨设棱长为2,则,cos,0,故填90.答案9011如图所示,已知ADB和ADC都是以D为直角顶点的直角三角形,且ADBDCD,BAC60.求证:BD平面ADC.证明不妨设ADBDCD1,则ABAC.(),由于()1,|cos 601.0,即BDAC,又
5、已知BDAD,ADACA,BD平面ADC.12(创新拓展)如图,正三棱柱ABCA1B1C1中,底面边长为.(1)设侧棱长为1,求证:AB1BC1;(2)设AB1与BC1的夹角为,求侧棱的长(1)证明,.BB1平面ABC,0,0.又ABC为正三角形,.()()2|cos,2110,AB1BC1.(2)解结合(1)知|cos,221.又|)2|.cos,|2,即侧棱长为2.高一数学测试题一 选择题:本大题共l0小题,每小题5分,满分50分在每小题给出的四个选项中只有一项是符合题目要求的1设集合x0,B=x|-1x3,则AB=( )A-1,0 B-3,3 C0,3 D-3,-12.下列图像表示函数图
6、像的是( )A B C D3. 函数的定义域为( )A(5,) B5,C(5,0) D (2,0)4. 已知,则的大小关系是( )A B C D 5.函数的实数解落在的区间是( ) 6.已知则线段的垂直平分线的方程是( ) 7. 下列条件中,能判断两个平面平行的是( )A 一个平面内的一条直线平行于另一个平面;B 一个平面内的两条直线平行于另一个平面C 一个平面内有无数条直线平行于另一个平面D 一个平面内任何一条直线都平行于另一个平面 8. 如图,在RtABC中,ABC=90,P为ABC所在平面外一点PA平面ABC,则四面体P-ABC中共有( )个直角三角形。 A 4 B 3 C 2 D 19
7、.如果轴截面为正方形的圆柱的侧面积是,那么圆柱的体积等于() A B C D 10 .在圆上,与直线的距离最小的点的坐标为( ) 二 填空题本大题共4小题,每小题5分,满分20分11.设,则的中点到点的距离为 .12. 如果一个几何体的三视图如右图所示(单位长度:cm), 则此几何体的表面积是 .13.设函数在R上是减函数,则的范围是 .14.已知点到直线距离为,则= .三、解答题:本大题共6小题,满分80分解答须写出文字说明、证明过程和演算步骤15. (本小题满分10分)求经过两条直线和的交点,并且与直线垂直的直线方程(一般式).16. (本小题满分14分)如图,的中点.(1)求证:;(2)
8、求证:; 17. (本小题满分14分)已知函数(14分)(1)求的定义域;(2)判断的奇偶性并证明;18. (本小题满分14分)当,函数为,经过(2,6),当时为,且过(-2,-2),(1)求的解析式;(2)求;(3)作出的图像,标出零点。19. (本小题满分14分)已知圆:,(1)求过点的圆的切线方程;(2)点为圆上任意一点,求的最值。20.(本小题满分14分)某商店经营的消费品进价每件14元,月销售量Q(百件)与销售价格P(元)的关系如下图,每月各种开支2000元,(1) 写出月销售量Q(百件)与销售价格P(元)的函数关系。(2) 该店为了保证职工最低生活费开支3600元,问:商品价格应控
9、制在什么范围?(3) 当商品价格每件为多少元时,月利润并扣除职工最低生活费的余额最大?并求出最大值。答案一选择(每题5分) 1-5 A C A C B 6-10 B D A B C二填空(每题5分) 11. 12. 13. 14. 1或-3三解答题15.(10分) 16.(14分) (1)取1分 为中点, (2)17.(14分)(1)由对数定义有 0,(2分)则有(2)对定义域内的任何一个,1分都有, 则为奇函数4分18.14分(1).6分(2) 3分(3)图略3分. 零点0,-12分19.14分(1)设圆心C,由已知C(2,3) , 1分AC所在直线斜率为, 2分则切线斜率为,1分则切线方程为。 2分(2)可以看成是原点O(0,0)与连线的斜率,则过原点与圆相切的直线的斜率为所求。1分圆心(2,3),半径1,设=k,1分则直线为圆的切线,有,2分解得,2分 所以的最大值为,最小值为 2分20.14分(1) 4分(2)当时,1分即,解得,故; 2分当时, 1分即,解得,故。2分所以(4) 每件19.5元时,余额最大,为450元。4分12
侵权处理QQ:3464097650--上传资料QQ:3464097650
【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。