1、正交试验设计简介正交试验设计简介一、试验设计的基本概念与正交表一、试验设计的基本概念与正交表p 多因素试验遇到的最大困难是试验次多因素试验遇到的最大困难是试验次数太多,若十个因素对产品质量有影响,数太多,若十个因素对产品质量有影响,每个因素取两个不同状态进行比较,有每个因素取两个不同状态进行比较,有210=1024、如果每个因素取三个不同如果每个因素取三个不同状态状态310=59049个不同的试验条件个不同的试验条件 在多因素试验中,有人采用在多因素试验中,有人采用“单因单因素轮换法素轮换法”,但是这种方法不一定能找,但是这种方法不一定能找到好的条件到好的条件 譬如:考察两个因子,先固定譬如:
2、考察两个因子,先固定A在在A1,发现发现B3好,再固定好,再固定B3,发现,发现A1好,但是实际上好好,但是实际上好的条件是的条件是A2B2。B1 B2 B3 A1 50 56 62 A2 56 70 60 A3 54 60 58因子因子与水与水平平 试验中要加以考察而改变状态的因素称试验中要加以考察而改变状态的因素称为因子,常用大写英文字母为因子,常用大写英文字母A、B、C等等表示。因子在试验中所取的状态称为水平。表示。因子在试验中所取的状态称为水平。因子因子A的水平用代表因子的字母加下标表的水平用代表因子的字母加下标表示,记为示,记为A1,A2,Ak.。p 在一次试验中每个因子总取一个在一
3、次试验中每个因子总取一个特定的水平,称各因子水平的一个组特定的水平,称各因子水平的一个组合为一个处理或一个试验条件合为一个处理或一个试验条件。试验指标与试验结果试验指标与试验结果 衡量试验条件好坏的特性(可以是质量特性也衡量试验条件好坏的特性(可以是质量特性也可以是产量特性或其它)称为指标,用可以是产量特性或其它)称为指标,用y表示。表示。由于由于y是一个随机变量,因此可以假定它有是一个随机变量,因此可以假定它有如下的结构式:如下的结构式:y=+其中其中是一个依赖于试验条件的常量,随试是一个依赖于试验条件的常量,随试验条件的变化而改变,验条件的变化而改变,是一个随机变量,常假定是一个随机变量,
4、常假定它服从正态分布它服从正态分布N(0,2)。)。正交表正交表 选择部分条件进行试验,再通过数据分析选择部分条件进行试验,再通过数据分析来寻找好的条件,这便是试验设计问题。通来寻找好的条件,这便是试验设计问题。通过少量的试验获得较多的信息,达到试验的过少量的试验获得较多的信息,达到试验的目的:发现那些因子对试验结果确有影响,目的:发现那些因子对试验结果确有影响,因子的什么水平组合是最好的。因子的什么水平组合是最好的。利用正交表进行试验设计的方法就是正交利用正交表进行试验设计的方法就是正交试验设计试验设计。“L”表示正交表,表示正交表,“9”是行数,在试验中表示试验是行数,在试验中表示试验的条
5、件数,的条件数,“4”是列数,在试验中表示可以安排的因是列数,在试验中表示可以安排的因子的最多个数,子的最多个数,“3”是表的主体只有三个不同数字,是表的主体只有三个不同数字,在试验中表示每一因子可以取的水平数。在试验中表示每一因子可以取的水平数。正交表具有正交性,这是指它有如下两个特正交表具有正交性,这是指它有如下两个特点:点:(1)每列中不同的数字重复次数相同。)每列中不同的数字重复次数相同。在表在表L9(34)中,每列有中,每列有3个不同数字:个不同数字:1,2,3,每一个出现每一个出现3次。次。(2)将任意两列的同行数字看成一个数对,)将任意两列的同行数字看成一个数对,那么一切可能数对
6、重复次数相同。那么一切可能数对重复次数相同。在表在表L9(34)中,任意两列有中,任意两列有9种可能的数对:种可能的数对:(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)每一每一对出现一次。对出现一次。(1)一类正交表的行数)一类正交表的行数n,列数,列数p,水平数,水平数qn=qk,k=2,3,4,p=(n-1)/(q-1)如:如:L4(23),L8(27),L16(215),L32(231)等这等这类正交表可以考察因子间交互作用类正交表可以考察因子间交互作用 (2)另一类正交表的行数,列数,水平数)另一类正交表的行数,列数,水平数之
7、间不满足上述的两个关系之间不满足上述的两个关系 如:如:L12(211),L18(37),L36(313)等等常用的正交表有两大类常用的正交表有两大类二、无交互作用的正交设计与数据二、无交互作用的正交设计与数据分析分析 试验设计一般有四个步骤:试验设计一般有四个步骤:1.试验设计试验设计 2.进行试验获得试验结果进行试验获得试验结果 3.数据分析数据分析 4.验证试验验证试验 例例1 磁鼓电机是彩色录像机磁鼓组件的磁鼓电机是彩色录像机磁鼓组件的关键部件之一,按质量要求其输出力矩应大于关键部件之一,按质量要求其输出力矩应大于210g.cm。某生产厂过去这项指标的合格率较。某生产厂过去这项指标的合
8、格率较低,从而希望通过试验找出好的条件,以提高低,从而希望通过试验找出好的条件,以提高磁鼓电机的输出力矩。磁鼓电机的输出力矩。(一)试验的设计(一)试验的设计 在安排试验时,一般应考虑如下在安排试验时,一般应考虑如下几步:几步:(1)明确试验目的;)明确试验目的;(2)明确试验指标;)明确试验指标;(3)确定因子与水平;)确定因子与水平;(4)选用合适的正交表,进行表头设计,)选用合适的正交表,进行表头设计,列出试验计划。列出试验计划。在本例中:在本例中:试验目的:提高磁鼓电机的输出力矩试验目的:提高磁鼓电机的输出力矩试验指标:输出力矩试验指标:输出力矩确定因子与水平:确定因子与水平:选表:首
9、先根据因子的水平数,找出一选表:首先根据因子的水平数,找出一类正交表,再根据因子的个数确定具体的表,类正交表,再根据因子的个数确定具体的表,把因子放到表的列上去,称为表头设计。把因子放到表的列上去,称为表头设计。把放因子的列中的数字改为因子的真实把放因子的列中的数字改为因子的真实水平,便成为一张试验计划表,水平,便成为一张试验计划表,每一行便是一每一行便是一个试验条件。个试验条件。在正交设计中在正交设计中n个试验条件是一起给出的个试验条件是一起给出的的,称为的,称为“整体设计整体设计”,并且均匀分布在试验空,并且均匀分布在试验空间中。间中。9个试验点的分布个试验点的分布C3C2C1A1A2A3
10、B1B2B3123456789(二)做试验,并记录试(二)做试验,并记录试验结果验结果在进行试验时,要注意几点:在进行试验时,要注意几点:1.除了所考察的因子外的其它条件,尽除了所考察的因子外的其它条件,尽可能保持相同可能保持相同 2.试验次序最好要随机化试验次序最好要随机化 3.必要时可以设置区组因子必要时可以设置区组因子(三)数据分析(三)数据分析 1.数据的直观分析数据的直观分析(1)寻找最好的试验条件)寻找最好的试验条件 在在A1水平下进行了三次试验:水平下进行了三次试验:#1,#2,#3,而,而在这三次试验中因子在这三次试验中因子B的三个水平各进行了一次试的三个水平各进行了一次试验,
11、因子验,因子C的三个水平也各进行了一次试验。的三个水平也各进行了一次试验。在在A2水平下进行了三次试验:水平下进行了三次试验:#4,#5,#6,在,在这三次试验中因子这三次试验中因子B与与C的三个水平各进行了一次的三个水平各进行了一次试验。试验。在在A3水平下进行了三次试验:水平下进行了三次试验:#7,#8,#9,在,在这三次试验中因子这三次试验中因子B与与C的三个水平各进行了一次的三个水平各进行了一次试验。试验。将全部试验分成三个组,那么这这三组数将全部试验分成三个组,那么这这三组数据间的差异就反映了因子据间的差异就反映了因子A的三个水平的差异,的三个水平的差异,为此计算各组数据的和与平均:
12、为此计算各组数据的和与平均:T1=y1+y2+y3=160+215+180=555,T2=y4+y5+y6=168+236+190=594,T3=y7+y8+y9=157+205+140=502,同理同理 对因子对因子B与与C将数据分成三组分别比较将数据分成三组分别比较 所有计算列在下面的计算表中所有计算列在下面的计算表中 (2)各因子对指标影响程度大小的分析)各因子对指标影响程度大小的分析 极差的大小反映了因子水平改变时对试验极差的大小反映了因子水平改变时对试验结果的影响大小。这里因子的极差是指各水平平结果的影响大小。这里因子的极差是指各水平平均值的最大值与最小值之差,譬如对因子均值的最大值
13、与最小值之差,譬如对因子A来讲:来讲:RA=198167.3=30.7其它的结果也列在上表中其它的结果也列在上表中(3)各因子不同水平对指标的影响图)各因子不同水平对指标的影响图9001100 13001011 12708090160170180190200210220输出力矩输出力矩RARBRCA:充磁量充磁量B:定位角度定位角度C:定子线圈匝数定子线圈匝数因子各水平对输出力矩的影响因子各水平对输出力矩的影响 由于正交表的特点,使试验条件均由于正交表的特点,使试验条件均匀分布在试验空间中,因此使数据间具匀分布在试验空间中,因此使数据间具有整齐可比性,上述的直观分析可以进有整齐可比性,上述的直
14、观分析可以进行。但是极差大到什么程度可以认为水行。但是极差大到什么程度可以认为水平的差异确实是有影响的呢?平的差异确实是有影响的呢?2.数据的方差分析数据的方差分析 要把引起数据波动的原因进行分解,数据要把引起数据波动的原因进行分解,数据的波动可以用偏差平方和来表示的波动可以用偏差平方和来表示。正交表中第正交表中第j列的偏差平方和的计算公式列的偏差平方和的计算公式:其中其中Tij为第为第j列第列第i水平的数据和,水平的数据和,T为数为数据总和,据总和,n为正交表的行数,为正交表的行数,q为该列的水平为该列的水平数。该列表头是哪个因子,则该数。该列表头是哪个因子,则该Sj即为该因子即为该因子的偏
15、差平方和,譬如的偏差平方和,譬如SA=S1正交表总的偏差平方和为:正交表总的偏差平方和为:在这里有:在这里有:表表4.6 例例4.1的方差分析表的方差分析表3.最佳条件的选择最佳条件的选择 对显著因子应该取最好的水平对显著因子应该取最好的水平 对不显著因子的水平可以任意选取,在实际对不显著因子的水平可以任意选取,在实际中通常从降低成本、操作方便等角度加以选择。中通常从降低成本、操作方便等角度加以选择。上面的例子中对因子上面的例子中对因子A与与B应该选择应该选择A2B2,因,因子子C可以任选,譬如为节约材料可选择可以任选,譬如为节约材料可选择C1(四)验证试验(四)验证试验 对对A2B2C1进行
16、三次试验,结果为:进行三次试验,结果为:234,240,220,平均值为,平均值为231.3此结果是此结果是满意的。满意的。交互作用交互作用 一个因子的水平好坏或好坏的程度受另一个因子的水平好坏或好坏的程度受另一因子水平制约的情况,称为因子一因子水平制约的情况,称为因子A与与B的交的交互作用。互作用。其直观表示如下面的图其直观表示如下面的图(b)与与(c)所示。所示。三、有交互作用的正交设计与数据分析三、有交互作用的正交设计与数据分析 两个因子的不同水平搭配下的得率两个因子的不同水平搭配下的得率60708090得率得率B1A1A2A1A2A1A2B2B1B1B2B2(a)(b)(c)(1)试验
17、的设计)试验的设计 明确试验目的;明确试验目的;明确试验指标;明确试验指标;确定试验中所考虑的因子与水平,并确确定试验中所考虑的因子与水平,并确定可能存在并要考察的交互作用;定可能存在并要考察的交互作用;选用合适的正交表,进行表头设计,列选用合适的正交表,进行表头设计,列出试验计划。出试验计划。例例2 为提高某种农药的收率,需要进行为提高某种农药的收率,需要进行试验。试验。试验目的:提高农药的收率试验目的:提高农药的收率试验指标:收率试验指标:收率确定因子与水平以及所要考察的交互作用:确定因子与水平以及所要考察的交互作用:还要考察因子还要考察因子A与与B的交互作用的交互作用选表:首先根据因子的
18、水平数,找出一类正交选表:首先根据因子的水平数,找出一类正交表表 再根据因子的个数及交互作用个数确定具再根据因子的个数及交互作用个数确定具体的表。体的表。把因子放到表的列上去,但是要先放有交把因子放到表的列上去,但是要先放有交互作用的两个因子,并利用交互作用表,标出交互作用的两个因子,并利用交互作用表,标出交互作用所在列,以便于今后的数据分析。互作用所在列,以便于今后的数据分析。把放因子的列中的数字改为因子的真实水把放因子的列中的数字改为因子的真实水平,便成为一张试验计划表平,便成为一张试验计划表表表4.9 L8(27)的交互作用表)的交互作用表表表4.10 试验计划试验计划(二)数据分析(二
19、)数据分析 1.数据的方差分析数据的方差分析 在二水平正交表中一列的偏差平方和有在二水平正交表中一列的偏差平方和有一个简单的计算公式:一个简单的计算公式:其中其中T1j、T2j分别是第分别是第j列一水平与二水平列一水平与二水平数据的和,数据的和,n是正交表的行数。是正交表的行数。表表4.11 例例4.3的计算表的计算表表表4.12 例例4.3的方差分析表的方差分析表表表4.13 AB的搭配表的搭配表(三)避免混杂现象(三)避免混杂现象表头设计的一表头设计的一个原则个原则 在进行表头设计时一列上只能放一个因子或在进行表头设计时一列上只能放一个因子或放一个交互作用。放一个交互作用。若在一列上有两个
20、因子或两个交互作用或一若在一列上有两个因子或两个交互作用或一个因子一个交互作用称为混杂个因子一个交互作用称为混杂,混杂应该避免混杂应该避免,否则否则数据分析要产生问题。数据分析要产生问题。在用正交表安排试验时要求:在用正交表安排试验时要求:因子与所在列的自由度相等因子与所在列的自由度相等 交互作用与所占列的自由度的和相等交互作用与所占列的自由度的和相等 所以二水平因子应该用二水平正交表,三水所以二水平因子应该用二水平正交表,三水平因子应该用三水平正交表。平因子应该用三水平正交表。二水平因子的交互作用的自由度为二水平因子的交互作用的自由度为1,所以在,所以在二水平正交表上占一列。二水平正交表上占
21、一列。三水平因子的交互作用的自由度为三水平因子的交互作用的自由度为4,所以在,所以在三水平正交表上占两列。三水平正交表上占两列。选择正交表时必须满足下面一个条件:选择正交表时必须满足下面一个条件:“所考察的因子与交互作用自由度之和所考察的因子与交互作用自由度之和n1”,其中其中n是正交表的行数。是正交表的行数。不过在存在交互作用的场合,这一条件满不过在存在交互作用的场合,这一条件满足时还不一定能用来安排试验,所以这是一个必足时还不一定能用来安排试验,所以这是一个必要条件。要条件。例例3 给出下列试验的表给出下列试验的表头设计:头设计:(1)A、B、C、D为二水平因子,同时考察为二水平因子,同时
22、考察交互作用交互作用AB,AC (2)A、B、C、D为二水平因子,同时考察为二水平因子,同时考察交互作用交互作用AB,CD (3)A、B、C、D、E为三水平因子,同时为三水平因子,同时考察交互作用考察交互作用AB它们分别要用它们分别要用L8(27),),L16(215),),L27(313)解解(1)由于因子均为二水平的,故选用二水平)由于因子均为二水平的,故选用二水平正交表,又因子与交互作用的自由度之和为:正交表,又因子与交互作用的自由度之和为:fA+fB+fC+fD+fAB+fAC=1+1+1+1+1+1=6故所选正交表的行数应满足:故所选正交表的行数应满足:n6+1=7,所以选,所以选L
23、8(27),表头设计如下:,表头设计如下:(2)由于因子均为二水平的,故仍选用二水平正)由于因子均为二水平的,故仍选用二水平正交表,又因子与交互作用的自由度之和为交表,又因子与交互作用的自由度之和为6,故所选,故所选正交表的行数应满足:正交表的行数应满足:n6+1=7,但,但L8(27)无法安排无法安排这四个因子与两个交互作用,因为不管四个因子放这四个因子与两个交互作用,因为不管四个因子放在哪四列上,两个交互作用或一个因子与一个交互在哪四列上,两个交互作用或一个因子与一个交互作用总会共用一列,从而产生混杂,譬如:作用总会共用一列,从而产生混杂,譬如:因此选用因此选用L16(215),表头设计如
24、下:,表头设计如下:(3)由于因子均为三水平的,故选用三水平正交)由于因子均为三水平的,故选用三水平正交表,又因子与交互作用的自由度之和为:表,又因子与交互作用的自由度之和为:fA+fB+fC+fD+fE+fAB=2+2+2+2+2+4=14故所选正交表的行数应满足:故所选正交表的行数应满足:n14+1=15,所以选,所以选L27(313),表头设计如下:,表头设计如下:四、有重复试验的情四、有重复试验的情况况 例例4 某厂为提高零件内孔研磨工序质量进某厂为提高零件内孔研磨工序质量进行工艺参数的选优试验,考察孔的锥度值,希行工艺参数的选优试验,考察孔的锥度值,希望其越小越好。望其越小越好。在试
25、验中考察的因子水平如下:在试验中考察的因子水平如下:表表4.14 因子水平表因子水平表采用正交表采用正交表L8(27)安排试验,表头设计如安排试验,表头设计如下:下:各偏差平方和的计算公式如下:各偏差平方和的计算公式如下:其中其中T为数据总和,为数据总和,n为正交表行数,为正交表行数,m为每为每一条件重复数,其自由度为一条件重复数,其自由度为mn-1其中其中yi为第为第i个条件数据的和,其自由度个条件数据的和,其自由度n-1 第第j列的偏差平方和为:列的偏差平方和为:在二水平正交表中在二水平正交表中 其中其中Tij为第为第j列第列第i水平数据的和,水平数据的和,q为该列水为该列水平数,其自由度为平数,其自由度为q-1 第二类误差的偏差平方和为第二类误差的偏差平方和为其自由度为其自由度为n(m-1)表表4.15 例例4.5的计算表的计算表p Se1=S3+S5+S6+S7=1.714fe1=4,Ve1=0.4285Se2=3.788,fe2=24,Ve2=0.1578F1=2.715F0.90(4,24)=2.19由于由于S3特别大,从实际考虑,因子特别大,从实际考虑,因子A与与B有交互有交互作用,重新作方差分析表如下:作用,重新作方差分析表如下:表表4.16 方差分析表方差分析表
侵权处理QQ:3464097650--上传资料QQ:3464097650
【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。