ImageVerifierCode 换一换
格式:PPT , 页数:43 ,大小:2.15MB ,
文档编号:4949772      下载积分:25 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-4949772.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(晟晟文业)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(版《数字信号处理(英)》课件Chap10-FIR-Digital-Filter-Design.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

版《数字信号处理(英)》课件Chap10-FIR-Digital-Filter-Design.ppt

1、1Introduction FIR filter:direct design of DT filter with the often added linear-phase requirement (1)Windowed Fourier series approach(10.2)(2)Frequency sampling approach(Problem 10.31,10.32)(3)Computer-based optimization method(10.3)Chap.10 FIR Digital Filter Design2 10.1 Preliminary ConsiderationsF

2、or FIR system:real polynomial approximation1(1)0()011 (10.1)NNNnnH zhhzh Nzh N zh n z0()(10.2)Njj nnH eh n eif a linear phase is desired h nh Nn 10.1.1 Basic Approaches to FIR Digital Filter Design310.1.2 Estimation of the Filter OrderKaisers Formula 1020log()13(10.3)14.6()2psspN For lowpass FIR fil

3、ter design:P397-398 Bellangers Formula 102log(10)1(10.4)3()2psspN Hermanns Formula 2(,)(,)()2(10.5)()2pspsspspDFNParameters see P398.0()Njj nnH eh n e410.2 Design of FIR Filters by Windowing(P400)()jj nddnHeh n eapproximation10.2.1 Least Integral-Squared Error Design of FIR Filters 21()()(10.9)2jjRd

4、H eHed Parseval s relation2 Rdnh nh n 122201 (10.11)Ndddnnn Nh nh nh nh n ,0dh nh nfornNtruncation,()(10.13)0,jcjLPceHe510.2.2 Impulse Responses of Ideal FiltersIdeal linear phase lowpass filter sin(),(10.14)()cLPnhnnn ()Ideal linear phase highpass filter 0,(),cjHPjcHeesin()sin(),(10.16)()()cHPnnhnn

5、nn 6Impulse Responses of Ideal Filters(II)Ideal linear phase bandpass filter 12,()0,otherwisejccjBPeHe21sin()sin(),(10.17)()()ccBPnnhnnnn Ideal linear phase bandstop filter 120,(),otherwiseccjBSjHee12sin()sin()sin(),(10.18)()()()ccBSnnnhnnnnn 7Impulse Responses of Ideal Filters(III)Ideal multiband f

6、ilter 1(),(10.19)1,2,jMLkkkHeAforkL11sin,(10.20)LMLnhnAAnn 10,LLAIdeal discrete-time Hilbert transformer ,0()(10.21),0jHTjHej0,(10.22)2,HTfor n evenhnfor n oddnIdeal discrete-time differentiator (),0(10.23)jDIFHej0,0(10.24)cos,0DIFnhnnnn8Gibbs phenomenon:Oscillatory behavior in the magnitude respons

7、e of causal FIR filters designed utilizing truncation10.2.3 Gibbs Phenomenon dh nh nw n9mainlobesidelobeMainlobe width-truncationperiodic continuous convolution()1()()()2jjjdH eHeW ed 1,0 0,otherwisenNw nsin(1)/2()sin(2)jjNW ee=N/2()je()()()jjdccHeeuu41mN10.2.3 Gibbs Phenomenon(II)10-2/(N+1)1110.2.3

8、 Gibbs Phenomenon(III)12 N oscillate more rapidly,but the amplitudes of the largest ripples=constant(1)For ,N m ,sidelobe,()jW e10.2.3 Gibbs Phenomenon(IV)(2)For the integral ,oscillation will occur at each sidelobe of moves past the discontinuity()1()()2jjdHeW ed()()jW e (3)The methods to reduce Gi

9、bbs phenomenon:-tapering the window smoothly to zero at each end,but m -a smooth transition in magnitude specifications1310.2.4 Fixed Window Functions(1)Hanning window:A=B=1/2,C=0;(2)Hamming window:A=0.54,B=0.46,C=0(3)Blackman window:A=0.42,B=0.5,C=0.08.Rectangular window:wn=un un N 124 coscos ,0nnw

10、 nABCnNNN Hanning,Hamming,Blackman:2/0/2 22/2 0 otherwisen NnNw nn NNnN Bartlett window:triangular14P406 Fig.10.6 Commonly used fixed windows10.2.4 Fixed Window Functions(II)N/2NRectangular Hamming HanningBartlett Blackman n wn 11510.2.4 Fixed Window Functions(III)P407 Fig.10.750N1610.2.4 Fixed Wind

11、ow Functions(IV)()0.5cjH eParameters predicting the performance of a windowmain lobe width relative sidelobe level (dB)MLSLASame ripples in passbandand stopbandwidth of transition bandspML()jH eType of windowRelative SidelobeLevel(dB)Main-lobe widthMinimum Stopband Attenuation(dB)TransitionBandwidth

12、 Rect.13.34/(N+1)20.91.84/NBartlett26.58/NHanning31.58/N43.96.22/NHamming42.78/N54.56.64/NBlackman58.112/N75.311.12/N1710.2.4 Fixed Window Functions(V)P408 Table 10.21810.2.4 Fixed Window Functions(VI)Example to illustrate the effect of windows N=50 P409 sidelobe level stopband attenuation()2cps1910

13、.2.4 Fixed Window Functions(VII)(1)Compute impulse response of the desired filter(according to the inverse Fourier equation)1()2jj nddh nHeed(2)Determine the suitable window by the minimum stopband attenuation and(3)Determine the length of FIR by the transition width(4)Obtain the designed FIR filter

14、:dh nh nw nSteps for FIR filter design:20Example 10.6 Page 410 Design an FIR lowpass digital filter with specifications:(1)the attenuation of the stopband should more than 40dB;(2).2)According to Table 10.2,we could select Hanning,hamming,Blackman window,then the bandwidth of the transition band sho

15、uld satisfy(for Hanning)Type I:N=32;Type II:N=330.3p10.2.4 Fixed Window Functions(VIII),0.5s(0.30.5)/20.4c1)6.220.2Ni.e.31.1N 32N Please select a suitable window function and determine the smallest length of the window.2110.2.4 Fixed Window FunctionsExample Show that the ideal highpass transformer w

16、ith a frequency response defined by (1)Determine the impulse response hn,the relation of and N?(2)What type of linear-phase FIR filter?(3)Write the impulse response hn using the Hann windows-base method.Solution:ccjcjjdjejeeH00)()()(2210.2.4 Fixed Window Functions()()()()()()()()11 2222112()2()12()c

17、ccccccjjnjjndjj njj njj njj njj nj nh njeedjeedjjeedeedjjeeeej nj neeen )()()()()()()1212()22cos()22()2()(1)sin()/2()cccjj nj njj njnj nj ncncceeeneeeeennnnn 2310.2.4 Fixed Window Functions 0 0ddNh nnNh nh n Rnotherwise(2)If N is even/2Nwhen,the filter has linear phase is integer is integer,h hdn is

18、 anti-symmetries n is anti-symmetries,and hn=-hN-n,the filter is type III.and hn=-hN-n,the filter is type III./2N If N is odd isn isnt integert integer,h hdn is symmetries n is symmetries,and hn=hN-n,the filter is type II.and hn=hN-n,the filter is type II./2N12(1)sin()/2()ncch nnn 2410.2.4 Fixed Win

19、dow Functions(3)21 2(1)sin()/21 cos()()dnccNh nh n W nnn RnnN 25with =N/2.controls the side-lobe amplitudes(attenuation)controls the main lobe width Prediction formula:attenuation s=20 log10s transition region width =s p together with attenuation s N(10.39)10.2.5 Adjustable Window Functions(P410)Kai

20、ser windowN26036Amplitude1.20.90.60.3051015200.40.1102(8.7),50,0.5842(21)0.07886(21),2150,0,21.8 (2.285ssssssssandN)p(10.41)(10.42)10.2.5 Adjustable Window Functions(II)27 Kaiser window design example100.420log40,0.50.30.20.5842(21)0.07886(21)3.395,and(8)/(2.285)22.324.sssssN(1)Determine the window

21、function Kaiser window:,Ni.e.,s=0.01,Assume:0.3,0.5,spQuestion:Is it suitable for N to be 23?28 Kaiser window design example(II)/2/2/20 ,(),.Suppose the freq.response of lowpass filter is,()0 ,.then ()-(),sin(/2)cjHPj Ncj Ncjlpcjj NjHPlpHPHeeeHeHeeHenNhnsin(/2).(/2)(/2)cnNnNnN(2)The desired impulse

22、response0.42spc29 Kaiser window design example(III)(3)The FIR filter designed2001(),where ,()and 2,0dnIh nh n w nw nIN/nNWhere N=24,=3.395Type I linear phase FIR3010.3 CAD of Equiripple Linear-Phase FIR Filters0()Njj nnH eh n e()jj nddnHeh n eapproximationApproximation methods:(2)Least Integral-Squa

23、red approximationWindowed Fourier Series approach(1)InterpolationFrequency sampling approach(3)Chebyshev approximationEquiripple approximationParks-McClellan Algorithm()jjeeH3110.3 CAD of Equiripple Linear-Phase FIR Filters(II)()()()()EWHDWeighted error function:(10.47)1,(),psin passbandWin stopband

24、or,()1,spin passbandWin stopband()()()HQA(10.62)()()()()()(10.67)()DEWQAQ(10.68)()()()WAD3210.3 CAD of Equiripple Linear-Phase FIR Filters(III)Chebyshev or Minimax criterion:equiripple FIR filterMinimize the peak absolute value of()E min max|()|h nRELinear-phase FIR filters obtained by the criterion

25、0()(cos)()LkkWkD0()cos()cos()(cos)LkkAa kkkT0()()cos()()LkEWa kkD polynomial approximation3310.3 CAD of Equiripple Linear-Phase FIR Filters(IV)Alternation Theorem:0()LkLkkP xa xl Let R be a union of disjoint closed subsets of l Let a desired function D(x)and weighting function W(x)be continuous on R

26、 l Define the error function E(x)=W(x)PL(x)D(x)l Maximum error maxmax()x FEE x3410.3 CAD of Equiripple Linear-Phase FIR Filters(V)necessary and sufficient condition for PL(x)being the unique Lth order polynomial under the Minimax criterion can be expressed by the alternation theorem:E(x)has at least

27、 L+2 alterations on F,i.e.xi,i=1,.,L L+2 such that xi xi+1,E(xi)=E(xi+1),for i=1,.,L1 and E(xi)=Emax,for i=1,.,Li1iix1ix3510.3 CAD of Equiripple Linear-Phase FIR Filters(VI)Parks-McClellan AlgorithmIterative method to determine the alternation frequencies i and the ripple 1.initialize i to some pute

28、 the ripple corresponding to the alternation frequencies3.interpolate a polynomial between the alternation points4.find the maximum/minimum values of the error5.if|E()|:stop else compute new i as extreme of E(),and go to 2 (else recursive)3610.5 FIR Digital Filter Design Using MatlabOrder Estimation

29、:kaiord()-Kaisers Formulabellangord()-Bellangers Formularemezord()-Hermanns Formulakaiserord()-filter order for Kaiser window-based design3710.5 FIR Digital Filter Design Using Matlab(II)Equiripple linear-phase FIR filter design:remez()-equiripple FIR filter design using Parks-McClellan algorithmExa

30、mple10.15 Design an equiripple FIR filter with specifications:0.8,1,4,0.5,40,0.0559,0.01psTpspsFKHz FKHz FKHzdBdB3810.5 FIR Digital Filter Design Using Matlab(III)3910.5 FIR Digital Filter Design Using Matlab(IV)118.7psdBdB4010.5 FIR Digital Filter Design Using Matlab(V)4110.5 FIR Digital Filter Des

31、ign Using Matlab(VI)42Windowing method for FIR filter design:fir1()and fir2()Example10.15 Design a FIR lowpass filter using a kaiser window with specifications:0.3,0.4,0.003162pss 10.5 FIR Digital Filter Design Using Matlab(VI)4310.1,10.2,10.3-estimation formula10.4-multiband filter impulse response

32、10.5 -truncation approximation10.6,10.7-ideal digital Hilbert transformation10.8 -ideal digital differentiator10.9 -delay-complementary pair10.10,10.11,10.12,10.18-inverse DTFT10.15,10.16,10.17-windowing method design10.20-fractional delay FIR filter10.21-ideal comb filter 10.27,10.28-different fitting algorithm10.29-filter sharpening10.3110.35-frequency sampling method 10.40-WDFT10.3610.38-Parks-McClellan algorithm weighting functionExercises

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|