1、主要内容主要内容n制约低渗透油藏高效开采的关键因素制约低渗透油藏高效开采的关键因素n国外水力压裂技术的新进展国外水力压裂技术的新进展破胶液残渣粒度与孔喉直径对比破胶液残渣粒度与孔喉直径对比0.02.04.06.08.010.00.11101001000颗粒直径,u m体积百分含量,粒度分布频率曲线图粒度分布频率曲线图Davg=103.70umD50=101.30umDmax=116.00um051015200.010.11101001000Pore Throat Diameter,umPercentage,%Davg=11.59umD50=0.109umDmax=10100umParticle
2、 Diameter of Unbroken Gel,um破胶液残渣粒破胶液残渣粒度大于孔喉直度大于孔喉直径,无颗粒侵径,无颗粒侵入伤害!入伤害!2、天然裂缝伤害:、天然裂缝伤害:残渣、冻胶残渣、冻胶 残渣堵塞天然裂缝,降低裂缝渗透率;破胶剂难残渣堵塞天然裂缝,降低裂缝渗透率;破胶剂难以进入天然裂缝,冻胶破胶不彻底,增加油气渗流以进入天然裂缝,冻胶破胶不彻底,增加油气渗流阻力。阻力。3、填砂裂缝伤害:、填砂裂缝伤害:滤饼、残渣滤饼、残渣 支撑剂嵌入滤饼降低填砂裂缝导流能力;支撑剂嵌入滤饼降低填砂裂缝导流能力;残渣堵塞裂缝孔隙。残渣堵塞裂缝孔隙。压裂液残渣伤害实验研究压裂液残渣伤害实验研究 压裂液
3、浓度伤害对比:压裂液浓度伤害对比:Carbo Pro 20/40Carbo Pro 20/40支撑剂支撑剂压裂液浓度伤害对比3032343638404244460123456789 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26时间(小时)导流能力m2-cm250ml(0.5%压裂液残渣)250ml(0.4%压裂液残渣)多项式(250ml(0.4%压裂液残渣))多项式(250ml(0.5%压裂液残渣))4.支撑剂嵌入实验研究 10 Kg/m10 Kg/m2 2铺砂浓度实验结果铺砂浓度实验结果贵阳林海贵阳林海30/6030/60目陶粒嵌入实验
4、目陶粒嵌入实验 贵阳林海(30/60)嵌入实验020406080100120140160180102030405060708090100压力(MPa)导流能力m2-cm钢板岩心清水压裂及其进展清水压裂及其进展 高强度超低密度支撑剂(高强度超低密度支撑剂(ULWULW)国外水力压裂技术的新进展国外水力压裂技术的新进展 所谓的所谓的清水压裂清水压裂,除了早期用清水不带砂外,除了早期用清水不带砂外,多数是用化学处理剂,如减阻剂、活性剂、防多数是用化学处理剂,如减阻剂、活性剂、防膨剂处理过的清水或线性胶,这种水也常常称膨剂处理过的清水或线性胶,这种水也常常称作作。作业中带有少量砂的,但也有加砂量较多的
5、,作业中带有少量砂的,但也有加砂量较多的,砂比常为砂比常为3.5%3.5%。是它们的共是它们的共性,至于造缝导流能力的大小性,至于造缝导流能力的大小 与储层物性有与储层物性有关。关。、新工艺清水压裂技术及其进展清水压裂技术及其进展低渗透油气藏高效开采的低渗透油气藏高效开采的关键关键:降低压裂液对地层的伤害!降低压裂液对地层的伤害!降低开采成本!降低开采成本!清水压裂技术清水压裂技术清水压裂技术的发展历程清水压裂技术的发展历程两个砂岩地层的应用效果对比两个砂岩地层的应用效果对比清水压裂对致密气藏伤害评价清水压裂对致密气藏伤害评价清水压裂增产机理及适应性清水压裂增产机理及适应性压裂液返排监测技术压
6、裂液返排监测技术70年代中期年代中期,在俄克拉荷马西北的密西西,在俄克拉荷马西北的密西西比裂缝性石灰岩地层进行了有规模的清水比裂缝性石灰岩地层进行了有规模的清水压裂;用大量的清水,每分钟排量为压裂;用大量的清水,每分钟排量为8 12方,砂比为方,砂比为1.75%,由于砂量及砂比都由于砂量及砂比都较低,难以长期支撑形成的裂缝。较低,难以长期支撑形成的裂缝。1986 至至1987年年在吉丁斯油田(澳斯汀白垩在吉丁斯油田(澳斯汀白垩石灰岩石灰岩地层)进行了清水压裂,基质岩石的地层)进行了清水压裂,基质岩石的渗透率为渗透率为0.005至至 0.2毫达西毫达西,地层厚度为,地层厚度为50至至 500英尺
7、。压裂后,油井从平均日产油英尺。压裂后,油井从平均日产油0.640.64方增加至方增加至6.46.4方。压裂规模平均方。压裂规模平均24002400方方清水,排量平均清水,排量平均7 7方,平均用浓度方,平均用浓度7.57.5至至15%15%的盐酸的盐酸500500方。方。清水压裂技术新进展清水压裂技术新进展1988年年联合太平洋能源(联合太平洋能源(UPR)公司)公司在其第一口在其第一口水平井水平井中也进行了清水压中也进行了清水压裂,在作业中使用了蜡珠作为分流剂。裂,在作业中使用了蜡珠作为分流剂。95年以后年以后,广泛应用于,广泛应用于裂缝性致密砂裂缝性致密砂岩岩气藏;提出了冻胶与滑溜水联合
8、的气藏;提出了冻胶与滑溜水联合的混合混合清水压裂技术。清水压裂技术。1995年年UPR公司东得克萨斯盆地棉花谷致密、公司东得克萨斯盆地棉花谷致密、低渗砂岩地层低渗砂岩地层泰勒段砂岩,对泰勒段砂岩,对150口井进行了口井进行了250次次的清水压裂的清水压裂渗透率渗透率0.001至至0.05毫达西毫达西无论纵向上和横向上都非常不均质,纵向上无论纵向上和横向上都非常不均质,纵向上砂页岩交替,砂层总厚为砂页岩交替,砂层总厚为1000到到1500英尺英尺清水压裂技术应用实例清水压裂技术应用实例1采用大量清水与少量的化学剂(降阻剂、活性剂、采用大量清水与少量的化学剂(降阻剂、活性剂、防膨剂等)防膨剂等)2
9、0/40目的目的 Ottawa砂子,总砂用量在砂子,总砂用量在2273公斤到公斤到136吨之间吨之间砂比砂比3.5%,少数作业中使用砂比达到,少数作业中使用砂比达到15%的尾随的尾随支撑剂支撑剂排量为排量为1.6方到方到13方,用水量约为方,用水量约为64方到方到3180方,方,前置液占前置液占40%到到50%棉花谷泰勒砂层棉花谷泰勒砂层A A气田大型清水压裂与常规压裂的比较气田大型清水压裂与常规压裂的比较 新工艺清水压裂与冻胶压裂效果比较清水压裂与冻胶压裂效果比较泰勒砂层气藏泰勒砂层气藏清水压裂清水压裂与与常规压裂常规压裂产量对比产量对比 新工艺清水压裂与冻胶压裂效果比较清水压裂与冻胶压裂效
10、果比较泰勒砂层泰勒砂层C C气田气田清水压裂清水压裂与与常规压裂常规压裂产量的比较产量的比较造缝后导流能力不足!造缝后导流能力不足!所以要根据地层物性所以要根据地层物性设计合理的导流能力、设计合理的导流能力、选择施工工艺选择施工工艺新工艺清水压裂与冻胶压裂效果比较清水压裂与冻胶压裂效果比较90 年代中期安纳达柯石油公司东得克萨斯棉花谷上侏年代中期安纳达柯石油公司东得克萨斯棉花谷上侏罗纪博西尔砂层罗纪博西尔砂层博西尔砂层位于棉花谷砂岩之下,是黑灰色页岩间夹有博西尔砂层位于棉花谷砂岩之下,是黑灰色页岩间夹有细砂、粉细泥质砂岩的大厚层细砂、粉细泥质砂岩的大厚层粘土的主要成分是绿泥石与伊利石粘土的主要
11、成分是绿泥石与伊利石平均孔隙度与渗透率分别为平均孔隙度与渗透率分别为610%及及0.005 0.05毫达西毫达西 低渗储层的含水饱和度为低渗储层的含水饱和度为50%,高渗透率储层为,高渗透率储层为5%清水压裂技术应用清水压裂技术应用实例实例2混合清水压裂混合清水压裂在工艺实践中发现,对某些储层清水压裂导在工艺实践中发现,对某些储层清水压裂导流能力得不到保证,采用了混合清水压裂工艺:流能力得不到保证,采用了混合清水压裂工艺:用清水造一定的缝长及缝宽后,继以硼交链的用清水造一定的缝长及缝宽后,继以硼交链的3.6 4.2 公斤公斤/方的胍胶压裂液,带有方的胍胶压裂液,带有20/40、40/70目砂子
12、,从而产生较高导流能力的水力裂缝。目砂子,从而产生较高导流能力的水力裂缝。EXT-4EXT-4气井气井清水压裂加清水压裂加少量砂子少量砂子压后采气曲线压后采气曲线EXT-9EXT-9气井气井清水压裂清水压裂加加大量砂子大量砂子压后采气曲线压后采气曲线EXT-15EXT-15气井气井混合清水压裂混合清水压裂压后采气曲线压后采气曲线研 究 的 目 的研 究 的 目 的 在上侏罗系砂岩的博西尔地层进行了清水压在上侏罗系砂岩的博西尔地层进行了清水压裂,施工中泵入大量清水并在裂缝扩展过程中又裂,施工中泵入大量清水并在裂缝扩展过程中又毫无防滤措施,在这样致密的砂层内毛管力自吸毫无防滤措施,在这样致密的砂层
13、内毛管力自吸现象又严重地存在;同时考虑到泵入水在裂缝扩现象又严重地存在;同时考虑到泵入水在裂缝扩展过程中,也会受到应力依赖的渗透率的影响。展过程中,也会受到应力依赖的渗透率的影响。所以采用数值模拟方法所以采用数值模拟方法研究这些因素对气井产能研究这些因素对气井产能的影响。的影响。清水压裂对致密砂岩地层伤害评价清水压裂对致密砂岩地层伤害评价压裂施工及监测情况滑溜水滑溜水1590方方40/70目涂层砂目涂层砂(RCS)50方方 平均排量平均排量12方方 井口平均作业压力井口平均作业压力53 MPa 微地震成象监测微地震成象监测 新工艺新工艺清水压裂中水锁及岩石物性应力依赖性的影响清水压裂中水锁及岩
14、石物性应力依赖性的影响 采用采用的综合模型的综合模型进行拟合,拟合时的限制条件如下:进行拟合,拟合时的限制条件如下:压裂压力约在压裂压力约在8184.5 MPa之间之间;裂缝微震成像的半长约为裂缝微震成像的半长约为106 137106 137米,垂直于缝米,垂直于缝的宽度很大(每边可达的宽度很大(每边可达1515米地层变形的范围!)米地层变形的范围!);返排期间水产量递减很快,到生产晚期基本为常数返排期间水产量递减很快,到生产晚期基本为常数;不稳定试井得出的缝长较短,缝导流能力约为不稳定试井得出的缝长较短,缝导流能力约为1.521.523dc.cm3dc.cm。研究方法数值模拟方法(地层裂缝模
15、型,单相与气水两相)(地层裂缝模型,单相与气水两相)1 渗渗 透透 率:率:0.030.0107 md2 导流能力:导流能力:1.52 dc.cm3 填砂缝长:填砂缝长:67 m压 裂 作 业 拟 合 结 果压 裂 作 业 拟 合 结 果QgQw排液与生产时间的拟合停泵时,停泵时,滤失区达滤失区达到了到了15英英尺尺平均进水深度平均进水深度5-10英尺英尺水侵入区域在井底周围已大大减少,但在水侵入区域在井底周围已大大减少,但在缝端部的含水饱和度仍然很高,此处的排缝端部的含水饱和度仍然很高,此处的排液程度较低,排液的初速度与井底周围的液程度较低,排液的初速度与井底周围的水饱和度、滤失区的厚度有关
16、,并受控于水饱和度、滤失区的厚度有关,并受控于随应力而变化的渗透率。随应力而变化的渗透率。单相气与气水两相流对产量影响不大!因此,水锁影响并不大!裂缝附近地层渗透率降低裂缝附近地层渗透率降低,产量降低,产量降低!因此,清水压裂也应因此,清水压裂也应针对性地选择添加剂,针对性地选择添加剂,以减少对储层的伤害!以减少对储层的伤害!岩石中的天然裂缝多半是表面粗糙,闭合后仍能保持岩石中的天然裂缝多半是表面粗糙,闭合后仍能保持一定的缝隙,这样形成的导流能力,对低渗储层来说一定的缝隙,这样形成的导流能力,对低渗储层来说已经足够了。这种情况已在实验室中观察到。已经足够了。这种情况已在实验室中观察到。常规冻胶
17、压裂,由于排液不完善,裂缝的导流能力受常规冻胶压裂,由于排液不完善,裂缝的导流能力受残渣伤害等有所降低,清水压裂基本上不存在不易排残渣伤害等有所降低,清水压裂基本上不存在不易排液的问题。液的问题。清水(线性胶)易于使砂子沉到垂直缝周边较细的天清水(线性胶)易于使砂子沉到垂直缝周边较细的天然裂缝中,扩大了渗滤面积。然裂缝中,扩大了渗滤面积。压裂过程中岩石脱落下来的碎屑(特别是在页岩地层压裂过程中岩石脱落下来的碎屑(特别是在页岩地层中)它们可能形成中)它们可能形成“自撑自撑”式的支撑剂。式的支撑剂。清水压裂增产机理常规解释 认为剪切力能使裂缝壁面从原位置上移动,从而认为剪切力能使裂缝壁面从原位置上
18、移动,从而产生不重合并出现许多粗糙泡体表面,由于存在剪切产生不重合并出现许多粗糙泡体表面,由于存在剪切滑移,在裂缝延伸过程中也能使已存在的微隙裂开,滑移,在裂缝延伸过程中也能使已存在的微隙裂开,并使断层面及其它弱面张开,这些现象可以发生在水并使断层面及其它弱面张开,这些现象可以发生在水力裂缝的端部或裂缝周围的滤失带中。力裂缝的端部或裂缝周围的滤失带中。剪切膨胀扩展裂缝剪切膨胀扩展裂缝基本假设基本假设清水压裂增产机理清水压裂增产机理剪切膨胀扩展裂缝剪切膨胀扩展裂缝物理过程物理过程当裂缝周边的岩石在当裂缝周边的岩石在压力超过门槛压力后,压力超过门槛压力后,即发生即发生“滑移滑移”破坏,破坏,两个裂
19、缝粗糙面的滑动,两个裂缝粗糙面的滑动,使垂直于缝面的缝隙膨使垂直于缝面的缝隙膨胀。停泵后,张开了的胀。停泵后,张开了的粗糙面使它们不能再滑粗糙面使它们不能再滑回到原来的位置,从而回到原来的位置,从而剪切膨胀的裂缝渗透率剪切膨胀的裂缝渗透率得到保持。得到保持。清水压裂在这种情况下的成功与否,清水压裂在这种情况下的成功与否,是否存在着有利的天是否存在着有利的天然裂缝系统以及它们对压力及原有的就地应力的响应程度。然裂缝系统以及它们对压力及原有的就地应力的响应程度。质地强硬的岩石有许多粗糙的节理,很高的抗剪程度,很好的剪切质地强硬的岩石有许多粗糙的节理,很高的抗剪程度,很好的剪切 与裂缝导流能力的耦合
20、性,清水压裂适用(与裂缝导流能力的耦合性,清水压裂适用(等);等);强度较弱的岩石如泥质砂岩就不适合清水压裂;强度较弱的岩石如泥质砂岩就不适合清水压裂;储层的裂缝网状分布及流体流动过程都可以用以评价是否应该采用储层的裂缝网状分布及流体流动过程都可以用以评价是否应该采用 清水压裂。清水压裂。清 水 压 裂 增 产 的 适 应 性清 水 压 裂 增 产 的 适 应 性清水压裂清水压裂可免去制备冻胶所消耗的化学剂量,包括成胶剂、交链剂可免去制备冻胶所消耗的化学剂量,包括成胶剂、交链剂与破胶剂,不含残渣,不会堵塞地层;与破胶剂,不含残渣,不会堵塞地层;减少了砂(支撑剂)的用量及运砂的费用减少了砂(支撑
21、剂)的用量及运砂的费用清水压裂与常规冻胶压裂在相同规模的作业中可节省费用清水压裂与常规冻胶压裂在相同规模的作业中可节省费用。对于那些渗透率很低的。对于那些渗透率很低的边际油气田边际油气田,清水压裂,清水压裂将是开采这类油气田的重要措施,也是降低采油成本,增加将是开采这类油气田的重要措施,也是降低采油成本,增加动用储量的有效途径。动用储量的有效途径。清 水 压 裂 技 术 结 论清 水 压 裂 技 术 结 论记录泵入水的回采率,但是此值受地层产记录泵入水的回采率,但是此值受地层产出水的影响很大。出水的影响很大。计量排液中的聚合物浓度,此方法操作上计量排液中的聚合物浓度,此方法操作上非常复杂,测试
22、结果也不十分确切,由于滤失而非常复杂,测试结果也不十分确切,由于滤失而使聚合物浓度提高,在泵入水回采率的计算方面,使聚合物浓度提高,在泵入水回采率的计算方面,可能产生误导。可能产生误导。分析注入前后的聚合物溶液以确定碳水化分析注入前后的聚合物溶液以确定碳水化合物的总含量,从而计算水的回采率。此方法同合物的总含量,从而计算水的回采率。此方法同样受缝中滤失的影响。样受缝中滤失的影响。压裂液排液或回排的监测压裂液排液或回排的监测问 题问 题F获得的水回采率都不是从作业中各个压获得的水回采率都不是从作业中各个压裂液段中得到,是笼统的整个作业过程裂液段中得到,是笼统的整个作业过程中的情况。中的情况。F有
23、时返排率很高,但压后生产动态很差!有时返排率很高,但压后生产动态很差!(往往是最后注入的一段液体未排出堵(往往是最后注入的一段液体未排出堵塞了裂缝!)塞了裂缝!)示踪剂具有独特性质,各不相同:它们彼示踪剂具有独特性质,各不相同:它们彼此不起反应,与岩层或金属管类也没有化学此不起反应,与岩层或金属管类也没有化学反应;不随时间或温度的变化而发生降解,反应;不随时间或温度的变化而发生降解,示踪剂在极低浓度(示踪剂在极低浓度(50ppt50ppt)下仍可被察觉。)下仍可被察觉。无论在运输、泵入或废弃时,都是安全的。无论在运输、泵入或废弃时,都是安全的。易溶于水,滤失后也不会浓集。易溶于水,滤失后也不会
24、浓集。压裂液排液或回排的监测在泵的低压部分注入,浓度是在泵的低压部分注入,浓度是1ppm1ppm。压裂。压裂后返排每隔后返排每隔1515分钟采样一次一直到有天然气分钟采样一次一直到有天然气突破,可以分析到样品中突破,可以分析到样品中1 ppb1 ppb的含量。由于的含量。由于分层分液段泵入性质独特的分层分液段泵入性质独特的CFTCFT,可用物质平,可用物质平衡方法计算分层,分液段回排效率,从而获衡方法计算分层,分液段回排效率,从而获得每口井的回排效率。得每口井的回排效率。从井底附近地区回排是由于井底附近的滤从井底附近地区回排是由于井底附近的滤失量太大,前置液阶段的液体滤失于此地。当失量太大,前
25、置液阶段的液体滤失于此地。当作业井回排时,井底附近滤失液先排出来。作业井回排时,井底附近滤失液先排出来。当井筒附近的渗透率低或没有滤失时,前当井筒附近的渗透率低或没有滤失时,前置液回流至井中并将它前面的液段推向井底,置液回流至井中并将它前面的液段推向井底,先泵入的最后排出。先泵入的最后排出。压裂液的两种压裂液的两种常规冻胶压裂液与滑溜水压裂液回排区别冻胶液可以冻胶液可以看作全悬浮看作全悬浮液,靠粘度液,靠粘度和排量携砂,和排量携砂,液段和支撑液段和支撑剂分布密切,剂分布密切,最后注入的最后注入的最先回排!最先回排!(受破胶剂(受破胶剂的影响)的影响)滑溜水靠排量携砂,砂子沉降后滑溜水靠排量携砂
26、,砂子沉降后液体在砂堤形成漩涡流,使先后液体在砂堤形成漩涡流,使先后加入的液段混合在一起,在相同加入的液段混合在一起,在相同的时间以相同的浓度排出!的时间以相同的浓度排出!化学压裂示踪剂技术的应用冻胶化学压裂示踪剂技术的应用冻胶化学压裂示踪剂技术的应用化学压裂示踪剂技术的应用清水清水 支撑剂材料强度的提高,支撑剂材料强度的提高,密度也随着加大,颗粒密度密度也随着加大,颗粒密度的增加,直接导致了输砂的的增加,直接导致了输砂的难度,也很难做到在水力裂难度,也很难做到在水力裂缝内均匀的布砂。沉降速度缝内均匀的布砂。沉降速度过快,也会导致压裂过程中过快,也会导致压裂过程中在地层中出现桥堵。在地层中出现
27、桥堵。低密度支撑剂能够在低排低密度支撑剂能够在低排量下保证支撑剂的输送,能提量下保证支撑剂的输送,能提供在绝大部分裂缝面积上得到供在绝大部分裂缝面积上得到支撑剂的机会,降低支撑剂密支撑剂的机会,降低支撑剂密度还可以减少配制压裂液系统度还可以减少配制压裂液系统的复杂性从而减少了对填砂裂的复杂性从而减少了对填砂裂缝的伤害。缝的伤害。、新材料新材料新材料新材料ULW1.25支撑剂支撑剂先 将 粒 径 比 较 接 近 的 核 桃 壳 微 粒先 将 粒 径 比 较 接 近 的 核 桃 壳 微 粒(20/3020/30目)用强树脂浸渍,然后将浸透的目)用强树脂浸渍,然后将浸透的核桃壳用酚醛树脂涂层,后一步
28、与现今用核桃壳用酚醛树脂涂层,后一步与现今用的涂层砂的工艺相似。的涂层砂的工艺相似。视密度为视密度为0.850.85克克/毫升毫升(是石英砂的一半是石英砂的一半)7979摄氏度下能承受摄氏度下能承受41.4 MPa41.4 MPa的闭合应力,的闭合应力,温度升高则强度降低,温度升高则强度降低,107107时仅为时仅为27.6MPa27.6MPa;可破碎到任意可破碎到任意APIAPI(泰勒网目)的大小,(泰勒网目)的大小,6 6100100目。目。新材料ULW1.75支撑剂支撑剂 为树脂涂层的多孔陶粒,制造过程与常规为树脂涂层的多孔陶粒,制造过程与常规低比重的陶粒支撑剂(低比重的陶粒支撑剂(LW
29、PLWP)相似,二者性能)相似,二者性能也比较接近,密度有较大的差别。也比较接近,密度有较大的差别。ULWULW的密度约在的密度约在1.75 1.75 到到1.91.9克克/毫升之间,毫升之间,与制造过程中控制颗粒的孔隙度有关。涂层的与制造过程中控制颗粒的孔隙度有关。涂层的多孔陶粒,一方面增加了它的强度并封闭了颗多孔陶粒,一方面增加了它的强度并封闭了颗粒外部的孔隙,防止了外部液体的入浸从而也粒外部的孔隙,防止了外部液体的入浸从而也保持了低密度的特点。保持了低密度的特点。经经1#树脂处理后,树脂处理后,产生了共价键结构,产生了共价键结构,不仅增加了颗粒变不仅增加了颗粒变形尺寸的能力,并形尺寸的能
30、力,并且提高了抗压强度。且提高了抗压强度。用用2#树脂处理后,树脂处理后,由于产生了巨大的由于产生了巨大的共价键力及在核桃共价键力及在核桃壳基质内聚合物链壳基质内聚合物链间交混的间交混的,所以颗粒所以颗粒的强度达到最大值。的强度达到最大值。新材料新材料天然核桃壳、超低密核桃壳支撑剂的渗透率和导流能力随闭合压力变化的曲线天然核桃壳、超低密核桃壳支撑剂的渗透率和导流能力随闭合压力变化的曲线渗透率、导流能力渗透率、导流能力与闭合压力的关系与闭合压力的关系ULWULW支撑剂性能评价支撑剂性能评价渗透率、导流能力渗透率、导流能力与闭合压力的关系与闭合压力的关系ULWULW支撑剂性能评价支撑剂性能评价UL
31、WULW支撑剂性能评价支撑剂性能评价静态沉降静态沉降动态沉降动态沉降ULWULW支撑剂性能评价支撑剂性能评价流 动 实 验流 动 实 验支撑剂(支撑剂(20/40)Ottawa砂、砂、ULW1.25、ULW1.75液体(液体(7cp)添加有聚丙稀酰胺降阻剂的水溶液(滑溜水)添加有聚丙稀酰胺降阻剂的水溶液(滑溜水)浓度(浓度(kg/m3)120(砂)(砂)60(超低密支撑剂)(超低密支撑剂)0.19m3/min0.03785m3/min0.095m3/min压压裂裂条条件件地点地点美国德州某气田美国德州某气田气藏埋深气藏埋深2484 2484 米米闭合压力闭合压力35.2 MPa35.2 MPa
32、层厚层厚40 40 米米滑溜水滑溜水738.2 738.2 方方排量排量1212方分方分支撑剂支撑剂OttawaOttawa砂、砂、ULW1.25ULW1.25模模拟拟结结果果由于砂重大部分砂子在井底附近很快沉到气层以下,形成砂堤,由于砂重大部分砂子在井底附近很快沉到气层以下,形成砂堤,所以支撑长度也比压裂长度短很多。所以支撑长度也比压裂长度短很多。ULW1.25 ULW1.25 支撑剂则均匀地支撑剂则均匀地分布在裂缝内,改善了缝的支撑长度,从而无论在长度上还是分布在裂缝内,改善了缝的支撑长度,从而无论在长度上还是纵向上都改善了导流能力。纵向上都改善了导流能力。目前测得的井初产能力为每日目前测得的井初产能力为每日5667756677方,后来稳定在方,后来稳定在4534045340方。方。28077kg28077kg,基本沉入底层!基本沉入底层!ULW1.7ULW1.7支撑剂支撑剂支撑裂缝模拟结果支撑裂缝模拟结果28835kg28835kg支撑剂基支撑剂基本在产层内!本在产层内!谢 谢!63 结束语结束语
侵权处理QQ:3464097650--上传资料QQ:3464097650
【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。