1、1234早在十八世纪以前,当地的居民便热衷于以早在十八世纪以前,当地的居民便热衷于以下有趣的问题:能不能设计一次散步,使得七座下有趣的问题:能不能设计一次散步,使得七座桥中的每一座都走过一次,而且只走过一次桥中的每一座都走过一次,而且只走过一次?这便是著名的哥尼斯堡七桥问题。这便是著名的哥尼斯堡七桥问题。5这个问题后来变得有点惊心动魄:说是有一这个问题后来变得有点惊心动魄:说是有一队工兵,因战略上的需要,奉命要炸掉这七座桥。队工兵,因战略上的需要,奉命要炸掉这七座桥。命令要求当载着炸药的卡车驶过某座桥时,就得命令要求当载着炸药的卡车驶过某座桥时,就得炸毁这座桥,不许遗漏一座!炸毁这座桥,不许遗
2、漏一座!6 如果有兴趣,完全可以照样子画一张地图,如果有兴趣,完全可以照样子画一张地图,亲自尝试尝试。不过,要告诉大家的是亲自尝试尝试。不过,要告诉大家的是,想把所想把所有的可能线路都试过一遍是极为困难的!因为有的可能线路都试过一遍是极为困难的!因为各种可能的线路有各种可能的线路有=5040种。要想一一试过,种。要想一一试过,真是谈何容易。正因为如此,七桥问题的解答真是谈何容易。正因为如此,七桥问题的解答便众说纷纭:有人在屡遭失败之后,倾向于否便众说纷纭:有人在屡遭失败之后,倾向于否定满足条件的解答的存在;另一些人则认为,定满足条件的解答的存在;另一些人则认为,巧妙的答案是存在的,只是人们尚未
3、发现而已,巧妙的答案是存在的,只是人们尚未发现而已,这在人类智慧所未及的领域,是很常见的事这在人类智慧所未及的领域,是很常见的事!27P77P7拿起栓有拿起栓有15个圆环的绳子,任选一个桥的支柱作为起点,沿桥依次套圈,看看个圆环的绳子,任选一个桥的支柱作为起点,沿桥依次套圈,看看是否可以让除起点之外的是否可以让除起点之外的13个桥柱上都有一个圈。(起点的柱子上有两个圈)。个桥柱上都有一个圈。(起点的柱子上有两个圈)。结论是,不可能实现完成该任务。结论是,不可能实现完成该任务。8910111213一笔画原理:一笔画原理:一个图如果可以一笔画成,那么这个图一个图如果可以一笔画成,那么这个图中奇数顶点的个数不是中奇数顶点的个数不是0就是就是2。1415161718192021请大家思考:“串”、“田”两字,在橡皮膜上可变为什么图形222324252627282930点A是在内部还是外部313233343536373839不分内外的不分内外的“克莱因克莱因瓶瓶”40414243444546474849505152535455565758n博物馆中的拓扑游戏道具博物馆中的拓扑游戏道具5960