ImageVerifierCode 换一换
格式:PPT , 页数:41 ,大小:468.50KB ,
文档编号:4984819      下载积分:25 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-4984819.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(晟晟文业)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(Chapter-2-The-Schrodinger-Equation-量子力学英文教案课件.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

Chapter-2-The-Schrodinger-Equation-量子力学英文教案课件.ppt

1、University of Electronic Science and Technology of China 2005-3-1 Prof.Zhang Xiaoxia Chapter 2 The Schrodinger EquationlThe Interpretation of the Wave FunctionlThe principle of the superposition statelAverage value of dynamics quantity and Differential OperatorslSchrodinger Equation lTime-independen

2、t Schrodinger EquationlThe Heisenberg Uncertainty Relation123456backUniversity of Electronic Science and Technology of China 2005-3-1 Prof.Zhang Xiaoxia The Interpretation of the wave functionWave functionThe interpretation of the wave functionThe property of wave functionbackUniversity of Electroni

3、c Science and Technology of China 2005-3-1 Prof.Zhang Xiaoxia )(expEtrpiA problem?A plane wave for a free particle),(tr If a particle moving in one dimension experiences a force represented by the potential V(x):describe a quantum mechanical particleIt is de Broglie wave and also is wave function of

4、 a free particle.(1)How to describe the state by wave function?(2)How to describe wave particle duality by wave function?(3)What does the wave function mean?wave function backback1 1 University of Electronic Science and Technology of China 2005-3-1 Prof.Zhang Xiaoxia The Interpretation of the wave f

5、unctionElectron PPOQQOThe probability density distribution|(r)|(r)|2 2 The probability distribution|(r)|(r)|2 2 x y z x y zUniversity of Electronic Science and Technology of China 2005-3-1 Prof.Zhang Xiaoxia The property of wave functionThe probability:d W(r,t)=C|(r,t)|d W(r,t)=C|(r,t)|2 2 d d,(1 1)

6、The probability and probability density The probability density:(r,t)=dW(r,t)/d(r,t)=dW(r,t)/d=C|(r,t)|=C|(r,t)|2 2W(tW(t)=)=V V dW dW=V V(r,t)d(r,t)d=C=CV V|(r,t)|(r,t)|2 2 d dUniversity of Electronic Science and Technology of China 2005-3-1 Prof.Zhang Xiaoxia(2)CC|(r,t)|(r,t)|2 2 d d=1,=1,C=1/C=1/

7、|(r,t)|(r,t)|2 2 d d221221),(),(),(),(trtrtrCtrC (3)|(A)(A)-1/2-1/2(r,t)(r,t)|2 2 d d=1=1(4)University of Electronic Science and Technology of China 2005-3-1 Prof.Zhang Xiaoxia A plane wave be unity I Dirac function def.def.0000)(xxxxxx)0(1)()(0000 dxxxdxxxxx)()()(00 xfdxxxxf )(0021)(xxikedkxx k=pk=

8、px x/,dk=dp,dk=dpx x/,xxxpidpexxx)(0021)()()()()(000 xxxfxxxf )(|1)(xaax )()(xx 0 x0 x)(0 xx dxeppxpxpxppixxxxxx)(021)(,University of Electronic Science and Technology of China 2005-3-1 Prof.Zhang Xiaoxia II II A plane wave be unity EtipEtrpiperAetr )(),(321)()()()(zpiypixpippprpipzyxzyxeAeAeAzyxAer

9、 A plane wave t=0t=0)(),(),(22*22xxtppippppedxtxtxxxxx dxxxexxxxpptEEi)()(*dxxxexxxxpptppi)()(*2222 dxxxxxpp)()(*)(221xxppA 若取若取 A A1 12 2 2 2 =1=1,则,则 A A1 1=2=2 -1/2-1/2,于是于是xpipxxex 21)()(xxpp A plane wave be unity)(xxpp dxtxtxxxpp),(),(*)(xxpp dxeAxppixx21 dxeppxppixxxx)(21)()()()()(000 xxxfxxxf

10、 University of Electronic Science and Technology of China 2005-3-1 Prof.Zhang Xiaoxia three dimension EtipEtrpiperetr )(21),(2/3 drredtrtrpptEEipp)()(),(),(*)()()()()()(*ppppppppdrrzzyyxxpp 2/332121 AAAA)()(ppppetEEi where2/321)(rpiper University of Electronic Science and Technology of China 2005-3-

11、1 Prof.Zhang Xiaoxia The principle of the superposition state(1)The principle of the superposition state(2)The wave function in momentum space backUniversity of Electronic Science and Technology of China 2005-3-1 Prof.Zhang Xiaoxia The principle of the superposition statel=C=C1 11 1+C+C2 22 2 l|2 2=

12、|C=|C1 11 1+C+C2 22 2|2 2 l =(C =(C1 1*1 1*+C+C2 2*2 2*)(C)(C1 11 1+C+C2 22 2)l =|C =|C1 1 1 1|2 2+|C+|C2 22 2|2 2+C+C1 1*C C2 21 1*2 2+C+C1 1C C2 2*1 12 2*P1 12 2S1S2electron The electron from the upper slit The electron from the lower slitThe interference term University of Electronic Science and

13、Technology of China 2005-3-1 Prof.Zhang Xiaoxia=C=C1 11 1+C+C2 22 2+.+C+.+Cn nn n +.+.=C=C1 11 1+C+C2 22 2The principle of the superposition stateUniversity of Electronic Science and Technology of China 2005-3-1 Prof.Zhang Xiaoxia The wave function in momentum space exp21)(2/3rpirp )(rdtrrtpcp),()()

14、,(pdrtpctrp)(),(),(dxdydzrpitrexp),(212/3 )(zyxdpdpdprpitpcexp),()2(12/3 The wave function in momentum space can be defined by the fourier transform The inverse fourier transform isUniversity of Electronic Science and Technology of China 2005-3-1 Prof.Zhang Xiaoxia pdtpctpcpdtpcshow),(),(|),(|2pdrdr

15、trrdrtrpp)(),()(),(pdrrrdrdtrtrpp)()(),(),()(),(),(rrrdrdtrtr 1),(),(rdtrtrrdtrrtpcp),()(),(University of Electronic Science and Technology of China 2005-3-1 Prof.Zhang Xiaoxia Average value of dynamics quantity and Differential OperatorsAverage value of dynamics quantity (1)Average value of positio

16、n(2)Average value of momentumDifferential Operators (1)The Momentum Operator(2)The Kinetic Energy Operator(3)The Angular Momentum Operators(4)Hamilton OperatorbackUniversity of Electronic Science and Technology of China 2005-3-1 Prof.Zhang Xiaoxia(1)Average value of position dxxxxx2|)(|drxxx2|)(|(2

17、2)Average value of momentumxxxxxxxdppcpppdxxipxpc22/1|)(|)/exp()()2(1)(backUniversity of Electronic Science and Technology of China 2005-3-1 Prof.Zhang Xiaoxia Differential Operators(1)The Momentum Operatorxxxxxxxxxdppcppcdppcppp)()(|)(|2 xxxxpidppcpdxexx)()(21 xxxxpidxdppcpexx)()(21 xxxpidxdppcedxd

18、ixx)()(21 )(21)(xxxpidppcedxdixdxx University of Electronic Science and Technology of China 2005-3-1 Prof.Zhang Xiaoxia izkyjxiiprrxx dxdipx three dimension:one dimensionUniversity of Electronic Science and Technology of China 2005-3-1 Prof.Zhang Xiaoxia One dimensiondxxFxFFdxxpxppdxxxxxxxxx)()()()(

19、)()(rdrrrdrFrFF)()()()(F is any OperatorrdrFrFFrdrprpprdrxrxxxxx)()()()()()(Three dimensionUniversity of Electronic Science and Technology of China 2005-3-1 Prof.Zhang Xiaoxia(2)The Kinetic Energy Operator22:22()()ppTheKineticEnergy TOperator TmmTTr Tr dr(3 3)The Angular Momentum Operators prLprL ()

20、()()xzyyxzzyxLypzpiyzzyLzpxpizxxzLxpypixyyx rdrLrL)()(University of Electronic Science and Technology of China 2005-3-1 Prof.Zhang Xiaoxia 22If a particle moves in a static potential()()()2V rHTVHTV rV rm (4 4)Hamilton OperatorUniversity of Electronic Science and Technology of China 2005-3-1 Prof.Zh

21、ang Xiaoxia Schrodinger Equation(1 1)(r,t):describe a quantum mechanical particle(2 2)The Schrodinger equation for a free particle(3 3)A particle in potential V(r)(4 4)The Schrodinger equation for many particles(5)The probability current density backUniversity of Electronic Science and Technology of

22、 China 2005-3-1 Prof.Zhang Xiaoxia How to describe a quantum mechanical particle?The particles are subject to forces and Newtons Second Law can then be used to describe the motion of the particle in terms of a second-order differential equation.(1 1)Classical PhysicsClassical Physics0000,t tdrttrpmd

23、t,22d rFmdtNewtons laws:University of Electronic Science and Technology of China 2005-3-1 Prof.Zhang Xiaoxia(2 2)quantum mechanical 2The wave equation must be consistent with the classical correspondence principle.1The wave function must be the solution of a linear differential equation.返回返回Universi

24、ty of Electronic Science and Technology of China 2005-3-1 Prof.Zhang Xiaoxia The Schrdinger equation for a free particle)(1 EtiEit )(expEtrpiAThe wave function for a free particle:The time derivative of the wave packet is,2222)(xxEtzpypxpipxpiAexxzyx(1)(2)(1)(2)12222222222zyxpppzyx22222222yzpypz 222

25、2221(2)22pp or The spatial derivative of this wave packet University of Electronic Science and Technology of China 2005-3-1 Prof.Zhang Xiaoxia )2()2(222 pEtiSatisfy some requirements 22224ppipptiE)(2232it ()2a free particle2pE,0)2(2 pE(1)(2)(1)(2)backUniversity of Electronic Science and Technology o

26、f China 2005-3-1 Prof.Zhang Xiaoxia A particle in potential V(r)Schrdinger equation22(,)()(,)2(,)Operatorir tV rr ttHr tHHamilton :HrVpE )(22 )(22rVpE backUniversity of Electronic Science and Technology of China 2005-3-1 Prof.Zhang Xiaoxia The Schrodinger equation for many particlesi i(i=1,2,.,N),(r

27、(i=1,2,.,N),(r1 1,r,r2 2,.,r,.,rN N ;t);t)U Ui i(r(ri i),V(r),V(r1 1,r,r2 2,.,r,.,rN N)The Schrodinger equation for many particles:);,(),()(2);,(211212221trrrrrrVrUtrrrtiNNiNiiiiN NiNiiiirrrVrUH12122),()(2 University of Electronic Science and Technology of China 2005-3-1 Prof.Zhang Xiaoxia The proba

28、bility current density2|),(|),(),(),(trtrtrtr probability current density 0),(dtrdtdThe Conservation of Probability University of Electronic Science and Technology of China 2005-3-1 Prof.Zhang Xiaoxia 222Vti222Vti2222 titi22 )(tiThe complex conjugate of this expression isNow consider the one-dimensi

29、onal Schrodinger equationUniversity of Electronic Science and Technology of China 2005-3-1 Prof.Zhang Xiaoxia dddtdi22 )(consider the integration of this equation:0),(dtrdtd0 Jt diddtd2 )(dJdtrdtd ),(),(),(trSdJdtrdtdSGauss Gauss THTHJ is the probability current density2 iJSdS University of Electron

30、ic Science and Technology of China 2005-3-1 Prof.Zhang Xiaoxia 0),(dtrdtd0 Jtmass conservationcharge conservation0 eeJt )(2|),(|2iJJtr )(2|),(|2 ieJeJtreeeebackUniversity of Electronic Science and Technology of China 2005-3-1 Prof.Zhang Xiaoxia The time-independent Schrodinger equationlThe time-inde

31、pendent Schrodinger equationlHamiltonian operator and the eigenvalue equation for energylThe step in finding general solutions of stationary stateslThe property of stationary statesbackUniversity of Electronic Science and Technology of China 2005-3-1 Prof.Zhang Xiaoxia The time-independent Schroding

32、er equation),()(2),(22trrVtrti )()(),(tfrtr )(2)()()(22rVtftfdtdri E )()(2)()(22rErVtEftfdtdi separation of variables/)(iEtetf Etiertr )(),(That isseparation of variables)(2)(1)()(122rVrtfdtdtfi Dividing this equation by()()givesr f tUniversity of Electronic Science and Technology of China 2005-3-1

33、Prof.Zhang Xiaoxia Hamiltonian operator and the eigenvalue equation for energy(1 1)Hamilton Hamilton operator),()(2),(22trrVtrti The classical hamiltonianHHamiltonianHamiltonian operator,:)()(2)()(22rErVtEftfdtdi EVEti22 HVti222)(r exp/iEt/expiEt SchrodingerSchrodinger equation equationUniversity of

34、 Electronic Science and Technology of China 2005-3-1 Prof.Zhang Xiaoxia(2)The eigenvalue equation for energylThe eigenvalue equationlThe The eigenfunctionslThe The eigenvalueHE EV 22 backEUniversity of Electronic Science and Technology of China 2005-3-1 Prof.Zhang Xiaoxia The step in finding general

35、 solutions of stationary states)()(222rErV 1212eigenvalue ,eigenfunctions ,nnEEE,/exp)(),(tiErtrnnn 1|)(|2 drCnnSchrodingerSchrodinger equationeigenenergiesstationary states eigenfunctionsNormalizable C Cn nbackUniversity of Electronic Science and Technology of China 2005-3-1 Prof.Zhang Xiaoxia The

36、property of stationary states(2)The probability current density nnntr ),(2),(nnnnnitrJ (1)the probability density)/exp()/exp(tiEtiEnnnn )/exp()/exp(tiEtiEnnnn )()(rrnn )/exp()/exp()/exp()/exp(2tiEtiEtiEtiEinnnnnnnn )()()()(2rrrrinnnn )(rJn University of Electronic Science and Technology of China 200

37、5-3-1 Prof.Zhang Xiaoxia dtrFtrFnn),(),((3)The average value dtiErFtiErnnnn)/exp()()/exp()(drFrnn)()(University of Electronic Science and Technology of China 2005-3-1 Prof.Zhang Xiaoxia The Heisenberg Uncertainty RelationFGik,222()()()4kFG 222)4xxxpixp ,(22)22xxxpxp (University of Electronic Science and Technology of China 2005-3-1 Prof.Zhang Xiaoxia Home worksP 123:3,4,

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|