ImageVerifierCode 换一换
格式:PPT , 页数:38 ,大小:1.07MB ,
文档编号:5000935      下载积分:25 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-5000935.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(晟晟文业)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(人工智能样板课件.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

人工智能样板课件.ppt

1、2.1 2.1 引言引言l 贝叶斯决策论是解决模式分类问题的一种基本统计途径。它做了如下假设,即决策问题可以用概率的形式来描述,并且假设所有的概率结构已知。l 例:鲑鱼和鲈鱼分类l两类鱼自然状态下的先验概率l先验概率是一个随机变量(=1鲈鱼;=2鲑鱼)l等概率假设下有:P(1)=P(2)P(1)+P(2)=1 仅根据先验概率的判决规则if P(1)P(2)则 判为1否则 判为 2连续判决连续判决和误差概率误差概率 使用类条件概率信息(P(x|)类条件概率密度函数)P(x|1)和 P(x|2)描述两类鱼光泽度的不同2.1 2.1 引言引言2.1 2.1 引言引言2.1 2.1 引言引言 处于类别

2、j并具有特征值x的模式的联合概率密度如下:p(j,x)=P(j|x).p(x)=p(x|j).P(j)21)()|()(jjjPxpxpp(x)P(|p(x x)|P(jjjevidencepriorlikelihoodposterior l由上可得贝叶斯公式:两类问题情况下非正式表示:根据后验概率判决X 是观测属性if P(1|x)P(2|x)判决状态为 1if P(1|x)P(2|x)判为 1 否则判为 2;所以:P(error|x)=min P(1|x),P(2|x)2.2 2.2 贝叶斯决策论贝叶斯决策论连续特征连续特征l 贝叶斯推广l使用多余一个的特征l允许多余两种类别状态的情形l允

3、许有其他行为而不是仅仅是判定类别l通过引入一个更一般的损失函数来替代误差概率2.2 2.2 贝叶斯决策论贝叶斯决策论连续特征连续特征 令1,2,c 表示有限的c个类别集 1,2,a 表示有限的a种可能的行为集 (i|j)为类别状态j 时采取行动i的风险。则有下面的几个等式:cjjjiixPxR1)|()|()|(cjjjjjjPpppPpP1)()|()()()()|()|(xxxxx总风险:xxxxdpRR)()|)(两类情况下 1 :判为 1 2 :判为 2 ij =(i|j):类别为j 时误判为i所引起的损失 条件风险:R(1|x)=11P(1|x)+12P(2|x)R(2|x)=21P

4、(1|x)+22P(2|x)2.2 2.2 贝叶斯决策论贝叶斯决策论连续特征连续特征 判决规则如下:如果 R(1|x)(12-22)P(2|x)判为 1 否则判为22.2 2.2 贝叶斯决策论贝叶斯决策论连续特征连续特征2.2 2.2 贝叶斯决策论贝叶斯决策论连续特征连续特征 等价判别规则2:如果:(21-11)P(x|1)P(1)(12-22)P(x|2)P(2)判为 1 否则判为2 l等价判别规则3(合理假设21 11):)()()|()|(121121221221PPppxx成立,则判为1 否则判为2似然比超过某个不依赖x x 的阀值,那么可判决为1 2.3 2.3 最小误差率分类最小误

5、差率分类 基于类别的行为 如果采取行为 i i 而实际类别为 j j,那么在i=j 的情况下判决是正确的,如果i j,则产生误判。为避免误判,需要寻找一种判决规则使误判概率最小化。对称损失或0-1损失函数:c,.,1j,i ji 1ji 0),(ji 则,条件风险为:11)|(1)|()|()|()|(jijcjjjiiPPPRxxxx 最小化误差概率,需要最大化后验概率 P(i|x)(因为 R(i|x)=1 P(i|x)基于最小化误差概率,有:对任给j i,如果P(i|x)P(j|x),则判为 i2.3 2.3 最小误差率分类最小误差率分类2.4 2.4 分类器、判别函数及判定面分类器、判别

6、函数及判定面 多类别情况 判别函数 gi(x),i=1,c如果:gi(x)gj(x)j i 分类器将特征向量x判为i 2.4 2.4 分类器、判别函数及判定面分类器、判别函数及判定面 一般风险情况下,可令gi(x)=-R(i|x)l(最大判别函数与最小的条件风险相对应)根据最小误差率情况下gi(x)=P(i|x)(最大判别函数与最大后验概率相对应)其他判别函数:)(ln)|(ln)()()|()()()|()()|()|()(1iiiiiicjjjiiiiPxpgPxpgPxpPxpPgxxxx2.4 2.4 分类器、判别函数及判定面分类器、判别函数及判定面 每种判决规则将特征空间分为c个判决

7、区域if gi(x)gj(x)j i 则 x属于Ri(也就是把x判为i)2.4 2.4 分类器、判别函数及判定面分类器、判别函数及判定面 两类情况(二分分类器)令 g(x)g1(x)g2(x)如果 g(x)0判为1;否则判为 2g(x)的另类计算:)()(ln)|()|(ln)()|()|()(212121PPPPgPPgxxxxxx2.5 正态密度l分析的简易型l连续性l很多处理都是渐进高斯的,大量小的独立的随机分布的和l手写字符,语音等都是高斯的单变量密度函数:其中:是x的期望值 2 是方差221exp 21)(xxP2.5 正态密度 多元密度函数 一般的d维多元正态密度的形式如下:x=(

8、x1,x2,xd)t =(1,2,d)t 均值向量=d*d 协方差矩阵|行列式值 -1逆矩阵)()(21exp)2(1)(12/12/xxxtdP2.5 正态密度2.6 2.6 正态分布的判别函数正态分布的判别函数 最小误差概率分类可以通过使用判别函数获得gi(x)=ln P(x|i)+ln P(i)多元情况下:)(Plnln212ln2d)x()x(21)x(gii1iitii 2.6 2.6 正态分布的判别函数正态分布的判别函数 情况1:i=2.I (I 是单位矩阵)(ln21,)()(ln221)()()(ln2)(20202222iitiiiiitiiiitititiitiiiiiPwwgPgPgwxwxxxxxxxxx其中:得到线性判别函数:)(其中“线性机器”使用线性判别函数的分类器。线性机器的决策面是一个由下式定义的超平面:gi(x)=gj(x)2.6 2.6 正态分布的判别函数正态分布的判别函数 情况:2 i=(有所类的协方差矩阵都相等,但各自均值向量任意!)2.6 2.6 正态分布的判别函数正态分布的判别函数2.6 2.6 正态分布的判别函数正态分布的判别函数 情况3:i=任意,每一类的协方差矩阵是不同的2.6 2.6 正态分布的判别函数正态分布的判别函数精品课件精品课件!精品课件精品课件!Thank you!

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|