1、定理定理 3 3(微积分基本公式)(微积分基本公式)如如果果)(xF是是连连续续函函数数)(xf在在区区间间,ba上上的的一一个个原原函函数数,则则)()()(aFbFdxxfba .又又 dttfxxa )()(也也是是)(xf的的一一个个原原函函数数,已知已知)(xF是是)(xf的一个原函数,的一个原函数,CxxF )()(,bax 证证三、牛顿莱布尼茨公式令令ax ,)()(CaaF 0)()(dttfaaa,)(CaF),()()(aFxFdttfxa ,)()(CdttfxFxa 令令 bx).()()(aFbFdxxfba 牛顿牛顿莱布尼茨公式莱布尼茨公式)()()(aFbFdxx
2、fba 微积分基本公式表明:微积分基本公式表明:baxF)(一个连续函数在区间一个连续函数在区间,ba上的定积分等于上的定积分等于它的任意一个原函数在区间它的任意一个原函数在区间,ba上的增量上的增量.注意注意当当ba 时,时,)()()(aFbFdxxfba 仍成立仍成立.求定积分问题转化为求原函数的问题求定积分问题转化为求原函数的问题.例例4 4 求求 .)1sincos2(20 dxxx原式原式 20cossin2 xxx .23 例例5 5 设设 ,求求 .215102)(xxxxf 20)(dxxf解解解解 102120)()()(dxxfdxxfdxxf在在2,1上上规规定定当当1
3、 x时时,5)(xf,102152dxxdx原式原式.6 xyo12例例6 6 求求 .,max222 dxxx解解由图形可知由图形可知,max)(2xxxf,21100222 xxxxxx 21210022dxxxdxdxx原式原式.211 xyo2xy xy 122 例例7 7 求求 解解.112dxx 当当0 x时时,x1的的一一个个原原函函数数是是|ln x,dxx 121 12|ln x.2ln2ln1ln 例例 8 8 计计算算曲曲线线xysin 在在,0 上上与与x轴轴所所围围 成成的的平平面面图图形形的的面面积积.解解 面积面积xyo 0sin xdxA 0cos x.2 3.
4、微积分基本公式微积分基本公式1.积分上限函数积分上限函数 xadttfx)()(2.积分上限函数的导数积分上限函数的导数)()(xfx )()()(aFbFdxxfba 四、小结牛顿莱布尼茨公式沟通了微分学与积分学牛顿莱布尼茨公式沟通了微分学与积分学之间的关系之间的关系思考题思考题 设设)(xf在在,ba上上连连续续,则则dttfxa)(与与duufbx)(是是x的的函函数数还还是是t与与u的的函函数数?它它们们的的导导数数存存在在吗吗?如如存存在在等等于于什什么么?思考题解答思考题解答dttfxa)(与与duufbx)(都都是是x的的函函数数)()(xfdttfdxdxa )()(xfduu
5、fdxdbx 一一、填填空空题题:1 1、baxdxedxd22=_ _ _ _ _ _ _ _ .2 2、xadxxfdxd)(_ _ _ _ _ _ _ _ _ _ _ .3 3、223)1ln(xdtttdxd_ _ _ _ _ _ _ _ .4 4、20)(dxxf_ _ _ _ _,其其中中 21,210,)(2xxxxxf .5 5、设、设 ,coscos1nxdxmxI dxnxmx sinsin,练练 习习 题题(1 1)、当)、当nm 时,时,1I=_,2I=_ _,(2 2)、当)、当nm 时,时,1I=_,_,2I=_.6 6、设、设,sincos nxdxmx(1 1)
6、、当)、当nm 时,时,3I=_ _,(2 2)、当)、当nm 时,时,3I=_.7 7、94)1(dxxx_.8 8、33121xdx_.9 9、xdttxx020coslim_.二、二、求导数:求导数:1 1、设函数设函数)(xyy 由方程由方程0cos00 xyttdtdte所确所确定,求定,求dxdy ;2 2、设设 12122,ln,lnttuduuyuduux)1(t,求求22dxyd ;3 3、xxdttdxdcossin2)cos(;4 4、设、设 2031)(xxdxxg,求,求)1(g .三三、计计算算下下列列各各定定积积分分:1 1、2122)1(dxxx;2 2、212
7、121xdx;3 3、012241133dxxxx;4 4、20sindxx .四、四、求下列极限:求下列极限:1、xtxtxdtedte022022)(lim;2、2502021)cos1(limxdttxx .五、五、设设)(xf为连续函数,证明为连续函数,证明:xxtdtduufdttxtf000)()(.六、六、求函数求函数 xdttttxf02113)(在区间在区间 1,0上的最上的最大值与最小值大值与最小值.七、七、设设 时,时,或或,当,当时,时,当当 xxxxxf000,sin21)(求求 xdttfx0)()(在在),(内的表达式内的表达式 .八、八、设设 baxf,)(在在
8、上连续且上连续且,0)(xf xaxbtfdtdttfxF)()()(,证明:证明:(1 1)、)、2)(xF ;(2 2)、方程)、方程0)(xF在在),(ba内有且仅有一个根内有且仅有一个根.一、一、1 1、0 0;2 2、)()(afxf;3 3、)1ln(23 xx ;4 4、65;5 5、(1)(1),;(2)0,0 (2)0,0;7 7、;6145 8 8、6;9 9、1.1.二、二、1 1、1sincos xx;2 2、tt ln212;3 3、)sincos()cos(sin2xxx ;4 4、2.三、三、1 1、852;2 2、3;3 3、14 ;4 4、4.4.练习题答案练习题答案四、四、1 1、0 0;2 2、101.六、六、335,0.,0.七、七、xxxxx,10,)cos1(210,0)(.