1、模糊与卡尔曼滤波目标跟踪控制系统的比较Comparison of Fuzzy and Kalman-Filter Target-Tracking control system导师:xx教授学 生:xxPeter J.Pacini,Bart Kosko1感谢你的观看2019年5月6日1 1、模糊控制器与卡尔曼滤波器的比较、模糊控制器与卡尔曼滤波器的比较3 3、模糊控制器的工作原理、模糊控制器的工作原理2 2、实时目标跟踪系统、实时目标跟踪系统内容简介5 5、自适应、自适应FAMFAM4 4、卡尔曼滤波跟踪与模糊跟踪的仿真、卡尔曼滤波跟踪与模糊跟踪的仿真2感谢你的观看2019年5月6日、模糊控制器
2、与卡尔曼滤波器的比较 卡尔曼滤波器需要明确的数学模型来定义输出与输入之间的关系 模糊控制器是一个模糊系统,其输出与输入之间没有经典的数学模型。111,11,kkkkkkkkWUXXkkkkVXHZ通过测量估计真实 代价(最小均方误差)递推3感谢你的观看2019年5月6日nI(1)模糊控制器)模糊控制器 X模糊控制器不同于传统的基于数学模型的控制器,模糊系统不需精确的数学模型:不需要根据输入来函数式地描述输出;同时模糊系统对于所描述状态和怎样描述状态并不是不确定的。模糊控制器是一个模糊系统,是单位立方体之间的映射:包含了空间所有的模糊子集;包含了空间的所有模糊子集。模糊系统 将模糊子集 映射成模
3、糊子集 。通常 和 是连续的集合。pnIIF:,.,1nxxX pIFXYYYnIXYnIX pIY 输入模糊集输出模糊集4感谢你的观看2019年5月6日模糊控制器有一系列的FAM(模糊自联想记忆)“规则”,它描述模糊的专家知识或学习训练好的输入到输出的转换。一个FAM可以总结概括一个特定的数学模型的动作。模糊系统可以非线性地将一个确定的或模糊化的输入转变成一个模糊集输出。这个输出模糊集通过质心化(“去模糊”)可得到一个具体的数值。模糊控制器需要我们说明或估计出FAM规则。虽然模糊控制器是一个数字化的系统,但专家可以将他的知识用自然语言总结,这一点对于复杂问题具有重要的意义。5感谢你的观看20
4、19年5月6日()数学模型控制器 数学模型控制器在输出和输入的函数关系确定的情况下的工作性能会很好。对于不确定的环境,数学模型控制器一般采用概率分布来描述。存在以下问题:(1)不确定性一般很难用经典数据模型加以准确描述。(2)很难将专家的知识加到系统中去,在这种系统中,专家的知识一般只能用来估计初始状态和协方差条件。6感谢你的观看2019年5月6日、目标实时跟踪系统目标实时跟踪系统一般采用雷达或其它设备去探测目标与设备所在平面的的高度和方位角。由两个马达控制设备的探测方向,通过连续地调整两个马达的转速,保持对目标的连续跟踪。对高度和方位角的控制可以采用相同的算法进行。7感谢你的观看2019年5
5、月6日目标跟踪系统输入量 位置误差:位置误差变化量:上次输出速度:目标跟踪系统输出量 马达转速:keke1kVkVLatchDelayControllerDelayTransducerMotor+C Cl lo oc ck kT Ta ar rg ge et tP Po os si it ti io on n+-keke1kVkV1ke+-8感谢你的观看2019年5月6日模糊化FAM规则1FAM规则2FAM规则n.1O2OnOOekdekvk19感谢你的观看2019年5月6日我们限制模糊控制器的输出角速度 到区间-6,6,同样 、也划分为7个等级:LN:大负:大负 -6MN:中负:中负 -4S
6、N:小负:小负 -2ZE:零:零 0SP:小正:小正 2MP:中正:中正 4LP:大正:大正 6模糊论域采用梯形,重叠25%kvkeke1kv10感谢你的观看2019年5月6日00.511.52-8-6-4-202468LNMNSNZESPMPLP这样,每一个输入量都对应着一个隶属度矢量:例如:6.2ke0.2ke8.11kVLN MN SN ZE SP MP LP(0 0 0 0 1 .4 0 )(0 0 1 0 0 0 0 )(0 0 0 .1 1 0 0 )11感谢你的观看2019年5月6日输入到输出的映射 FAM(模糊联想记忆)规则是将输入模糊集映射到输出模糊集的关键机制。例如:IF
7、AND AND THENMPekSNekZEVk1SPVk1.0)(1)(4.0)(1kZEkSNkMPVmememSPVk 因为该规则中使用的是合取联结词AND,则 的有效系数:1.0)1.0 ,1 ,4.0min(iw12感谢你的观看2019年5月6日MPSNZESPekdekvk1相关乘积推理iiiLO1.0i一条FAM规则13感谢你的观看2019年5月6日 对于一组FAM规则,一个输入量将对应一组输出结果。例如:iiwConsequent 1 0.0 MP 2 0.2 SP 3 1.0 ZE 4 0.4 SN 5 0.1 SP 6 0.8 ZE 7 0.6 SN14感谢你的观看2019
8、年5月6日模糊质心的计算pjjOpjjjOkymyymv11)()(iiwConsequent 1 0.0 MP 2 0.2 SP 3 1.0 ZE 4 0.4 SN 5 0.1 SP 6 0.8 ZE 7 0.6 SNSN 1.0 ZE 1.8 SP 0.3 452.03.08.113.028.1012kv15感谢你的观看2019年5月6日第九章模糊集输出采用最小相关编码,这里采用相关乘法编码:)()(ymlwymoiiiNiiymoymo1)()(16感谢你的观看2019年5月6日输出模糊集的形状:输出模糊集的形状与FAM规则的编码模式有关。(2)相关乘积编码 (1)相关最小编码)(,mi
9、n()(ymwymLiiOi)()(ymwymLiiOiConsequent LiOutput OiwiConsequent LiOutput OiwidyymdyyymvOOk)()(pjjOpjjOjkymymyv11)()(iiiLO17感谢你的观看2019年5月6日18感谢你的观看2019年5月6日最后的输出 dyymodyyymovk)()(对于离散的情况 pjjpjjjkymoymoyv11)()((11-7)19感谢你的观看2019年5月6日定理定理1:如果使用相关乘法推理产生输出模糊集,那么我们通过局部模糊中心来计算全局的模糊中心。NiiiNiiiikIwIcwv11 、分别代
10、表第 个模糊规则输出集 的面积和质心iIiciiLdyymILii)(11-10)iLiLiLiiIdyyymdyymdyyymc)()()(20感谢你的观看2019年5月6日定理定理2:如果论域中的7个模糊集是对称的、单峰的并且我们使用乘法相关推理,那么我们可以根据分别7个模糊输出集的质心来计算最终的输出 。kv7171)()(jjjjjjjkJymoJyymov21感谢你的观看2019年5月6日模糊控制面控制系统把输入映射为输出输入到输出的变换定义为控制面(control surface)Control surface of the fuzzy controller for constan
11、t error ek=0050100150020406080100120140-8-6-4-2024622感谢你的观看2019年5月6日.模糊跟踪仿真v实时目标跟踪系统一般采用雷达或其它设备去探测目标与设备所在平面的的高度和方位角。由两个马达控制设备的探测方向,通过连续地调整两个马达的转速,保持对目标的连续跟踪。v通过平台与目标的误差、误差的变化量以及前一时刻电机的转速来调节当前时刻电机的转速,保持对目标的跟踪。23感谢你的观看2019年5月6日模糊跟踪仿真0102030405060708090100020406080100120140160180TimeAzimuth in degrees0
12、102030405060708090100-70-60-50-40-30-20-10010TimeAzimuth error in degreesBest performance of the fuzzy controller 24感谢你的观看2019年5月6日0102030405060708090100020406080100120140160180TimeAzimuth in degrees0102030405060708090100-70-60-50-40-30-20-10010TimeAzimuth error in degreesToo much overlap causes exc
13、essive overshoot 25感谢你的观看2019年5月6日0102030405060708090100020406080100120140160180TimeAzimuth in degrees0102030405060708090100-70-60-50-40-30-20-10010TimeAzimuth error in degreesToo little overlap causes lead or lag for several consecutive time intervals 26感谢你的观看2019年5月6日Kalman 跟踪仿真0102030405060708090
14、10020406080100120140160180timeAzimuthtrackingtruefiltered0102030405060708090100-70-60-50-40-30-20-10010TimeAzimuth error in degreesKalman-filter controller with unmodeled-effects noise variance Var(w)=0 27感谢你的观看2019年5月6日010203040506070809010000.10.20.30.40.50.60.70.8Kalman-filter controller with Var
15、(w)=0 28感谢你的观看2019年5月6日010203040506070809010020406080100120140160180timeAzimuthtrackingtruefiltered0102030405060708090100-70-60-50-40-30-20-10010TimeAzimuth error in degreesKalman-filter controller with Var(w)=1.0 29感谢你的观看2019年5月6日 灵敏度分析 在正常环境下,当状态噪声的方差Var(w)很小时,两种控制器间的性能几乎相同。当增加了更多的不确定条件后,两者的性能就不同了
16、。kkkkweexx1 以下是卡尔曼滤波器的状态方程:其中,噪声项 是目标的状态噪声,当噪声增加越多时,状态方程就变得越不确定。噪声增大,卡尔曼滤波器的均方根误差(RMSE)急剧增大。kw30感谢你的观看2019年5月6日010203040506000.511.522.5Root-mean-squared error of the Kalman-filter controller as Var(w)varies 31感谢你的观看2019年5月6日 模糊控制器的不确定性控制完全是由FAM规则库来承担的。那么减少模糊控制器的FAM规则的数量,就相当于增加了系统的不确定性。实验表明:即使模糊规则减少
17、60,系统的RMSE依然增加很小。模糊控制器在处理系统不确定性上表现良好。将“稳态”FAM规则进行篡改:(ZE,ZE,ZE;ZE)(ZE,ZE,ZE;LP)系统会迅速调整以降低误差。模糊控制器具有很强的鲁棒性32感谢你的观看2019年5月6日使用无监督的乘积空间聚类(unsupervised product-space clustering)来训练自适应的FAM模糊控制器,也就是产生FAM规则。、自适应FAM33感谢你的观看2019年5月6日v输入空间与输出空间构成了一个乘积空间v给出一条目标运动轨迹就能产生很多乘积空间训练矢量v把这些矢量在乘积空间中聚类,得到规则v聚类的时候可以使用DCLLNSPSPZESNMNLNMNSNZELPMPMPLP输入空间输出空间34感谢你的观看2019年5月6日0510152025303540455005010015020025035感谢你的观看2019年5月6日LNSPSPZESNMNLNMNSNZELPMPMPLP16016017019023019017036感谢你的观看2019年5月6日37感谢你的观看2019年5月6日谢谢!38感谢你的观看2019年5月6日39感谢你的观看2019年5月6日
侵权处理QQ:3464097650--上传资料QQ:3464097650
【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。