ImageVerifierCode 换一换
格式:PPT , 页数:33 ,大小:1.29MB ,
文档编号:5124006      下载积分:25 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-5124006.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(晟晟文业)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(多面体与球的接切问题讲解课件.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

多面体与球的接切问题讲解课件.ppt

1、7.2.2与球有关的切接问题与球有关的切接问题学学情分析情分析 几何体外接球对于学生来说是一个难点,几何体外接球对于学生来说是一个难点,主要有主要有如下问题(如下问题(1 1)图形不会画,图形不会画,(2 2)在画出图形的情况下在画出图形的情况下,不知道球心在什么位置,半径是多少而无法解题。不知道球心在什么位置,半径是多少而无法解题。半圆以它的直径为旋转轴,旋半圆以它的直径为旋转轴,旋转所成的曲面叫做球面转所成的曲面叫做球面.球面所球面所围成的几何体叫做围成的几何体叫做_,半圆的圆心叫做球的半圆的圆心叫做球的_,半圆的半径叫做球的半圆的半径叫做球的_。球球球心球心半径半径 性质性质2:球心和截

2、面圆心的连线球心和截面圆心的连线_于截面于截面22dRr性质性质1:用一个平面去截用一个平面去截球球,截面是,截面是_;用一个平面去截用一个平面去截球面球面,截线是截线是 _。大圆大圆-截面过截面过_,半径等于球半径;,半径等于球半径;小圆小圆-截面不过截面不过_性质性质3:球心到截面的距离球心到截面的距离d与球与球 的半径的半径R及截面的半径及截面的半径r 有下面的关系有下面的关系:圆面圆面圆圆球心球心球心球心垂直垂直问题探究一 球心在正方体的中心,随着球的半径逐渐增大,球与正方体有哪些特殊位置关系?球的直径等于正方体棱长。aR 2正方体的内切球正方体的内切球球与正方体的棱相切球与正方体的棱

3、相切球的直径等于正方体一个面上的对角线长aR22切点:切点:各棱的中点各棱的中点。球心:球心:正方体的中心正方体的中心。直径:直径:“对棱对棱”中点连线中点连线正方体的外接球正方体的外接球球直径等于球直径等于正方体的(体)对角线aR32问题探究二 球与长方体又有哪些位置关系?长方体的外接球长方体的外接球长方体的(体)对角线等于球直径Rcbalcba2222,则、分别为设长方体的长、宽、高 问题探究三 随着球半径的逐渐减小,球与正四面体有哪些特殊位置关系?1、球与正四面体的外接问题、球与正四面体的外接问题设棱长为设棱长为a的正四面体的外接球的半径的正四面体的外接球的半径R.aR462.球与正四面

4、体的棱切问题球与正四面体的棱切问题 设棱长为设棱长为a的正四面体的棱切球的半径的正四面体的棱切球的半径R.aR423.球与正四面体的内切问题球与正四面体的内切问题rShSV全面积底面积3131ar126 ShSr 底面积全面积14SrSh底面积全面积14rh?63haOPABCDKH举一反三:若三棱锥的三条侧棱两两垂直,且侧棱长分别为1、2、3,则其外接球的表面积是 .(2)正四面体的切接问题)正四面体的切接问题 例 3、一个四面体的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为()A.3 B.4 C.3 3 D.6 (2012辽宁辽宁理理16)已知正三棱锥已知正三棱锥 P-ABC,点,点P,A,B,C都在半径为都在半径为 的的球球面上,若面上,若PA,PB,PC两两互相垂两两互相垂直,则球心到截面直,则球心到截面ABC的距离为的距离为_.3,.22261233333363323323333解法:PAaABa AHaPHaOHaRRaRaRad2322 312 323333解法:RRPHROHRPH

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|