ImageVerifierCode 换一换
格式:PPT , 页数:60 ,大小:948.76KB ,
文档编号:5156429      下载积分:28 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-5156429.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(晟晟文业)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(医学统计学英文课件CHO2-description-of-measurement-data.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

医学统计学英文课件CHO2-description-of-measurement-data.ppt

1、Description of Measurement Data Chapter 2Content1.Frequency distribution 2.Descriptions of central tendency 3.Measures of dispersion 4.Normal distribution 5.Range of reference value Section 1 Frequency Distribution 1、Frequency table:Example 2-1 To acquire the values of total cholesterol in serum of

2、101 healthy female adults as below,and to work out the frequency table.2.35 4.21 3.32 5.35 4.17 4.13 2.78 4.26 3.58 4.34 4.84 4.41 4.78 3.95 3.92 3.58 3.66 4.28 3.26 3.50 2.70 4.61 4.75 2.91 3.91 4.59 4.19 2.68 4.52 4.91 3.18 3.68 4.83 3.87 3.95 3.91 4.15 4.55 4.80 3.41 4.12 3.95 5.08 4.53 3.92 3.58

3、 5.35 3.84 3.60 3.51 4.06 3.07 3.55 4.23 3.57 4.83 3.52 3.84 4.50 3.96 4.50 3.27 4.52 3.19 4.59 3.75 3.98 4.13 4.26 3.63 3.87 5.71 3.30 4.73 4.17 5.13 3.78 4.57 3.80 3.93 3.78 3.99 4.48 4.28 4.06 5.26 5.25 3.98 5.03 3.51 3.86 3.02 3.70 4.33 3.29 3.25 4.15 4.36 4.95 3.00 3.26 Approach:(1).Range:The d

4、ifference between the maximum and the minimum,R.。5.712.353.36(mmol/L)R(2)Class Interval(i):Usually divided into 10-15 groups(3)Group:Lower limit(L):the beginning of every groupUpper limit(U):the end of every group3.36/100.3360.30i Group 2.30 2.60 2.90 3.20 5.605.90 2.302.60(4)Grouping and Counting F

5、requencies LXU2.302.602、Graph of frequency distribution3、Use of frequency table and graph of frequency distribution1Describing the type of frequencies distribution(1)Symmetric distribution:(2)Skewed to the right distribution/Positively skewed distribution (3)Skewed to the left distribution/negativel

6、y skewed distribution2Describing the characteristic of frequencies distribution3.Finding shadiness value4.Convenient for next statistical analysis and managementSection 2 Descriptions of Central Tendency Average in common use:Mean Geometric mean Median1、MeanA descriptive statistic used as a measure

7、of central tendency.All scores in a set of scores are added together and divided by the number of subjects.(1)、Calculate MethodDirect Account:Formula:12nXXXXXnnExample 2-2 To calculate mean of the values of total cholesterol in serum of 100 healthy female adults in direct method.2.35 4.21 3.32 5.35

8、4.17 4.13 2.78 4.26 3.58 4.34 4.84 4.41 4.78 3.95 3.92 3.58 3.66 4.28 3.26 3.50 2.70 4.61 4.75 2.91 3.91 4.59 4.19 2.68 4.52 4.91 3.18 3.68 4.83 3.87 3.95 3.91 4.15 4.55 4.80 3.41 4.12 3.95 5.08 4.53 3.92 3.58 5.35 3.84 3.60 3.51 4.06 3.07 3.55 4.23 3.57 4.83 3.52 3.84 4.50 3.96 4.50 3.27 4.52 3.19

9、4.59 3.75 3.98 4.13 4.26 3.63 3.87 5.71 3.30 4.73 4.17 5.13 3.78 4.57 3.80 3.93 3.78 3.99 4.48 4.28 4.06 5.26 5.25 3.98 5.03 3.51 3.86 3.02 3.70 4.33 3.29 3.25 4.15 4.36 4.95 3.00 3.26 2.354.783.914.03(mmol/L)101XWeighting Method:Formula:112233123kkkfXf Xf Xf Xf XXfffffExample 2-3 Calculate the mean

10、 of values in table 2-1 by weighting methodGroup Frequencies(1)(2)2.30 1 2.60 3 2.90 6 3.20 8 3.50 17 3.80 20 4.10 17 4.40 12 4.70 9 5.00 5 5.30 2 5.605.90 1 Total 101 1 2.45 3 2.751 5.75409.754.06(mmol/L)1 31101X (2)、Application Adapt to describe Symmetric distribution,specially of normal distribut

11、ion data.2、Geometric meanThe geometric mean is simply the average of symmetric values after logarithm transition.(1)、Calculate MethodDirect method Formula:or12nnGX XX1lglg()XGnExample 2-4 To acquire reciprocal titer of sera as below,calculate the geometric mean.10,20,40,40,160510 20 40 40 16034.8G 1

12、1lglg10lg20lg40lg40lg160lg()lg()34.85XGnWeighting methodFormula:1lglg()fXGf(2)、Application:Adapt to data of geometric progression growth,especially of logarithm normal distribution.3、Median and Percentile(1)Median The median is the score/value that is exactly in the middle of a distribution.Formula:

13、n-odd numbern-even number 1()2nMX()(1)2212nnMXXExample 2-5 Calculate the medium of latent period of 7 patients as below.2,3,4,5,6,9,16Example 2-6 Calculate the medium of latent period of 8 patients as below.1,2,2,3,5,8,15,24Application1、All kinds of data2、Data of skewed distribution and those of no

14、exact value in one end or two(2)PercentilePercentile is a kind of position index.Direct method -decimal fraction:-integer:%nXtrunc(%)1XnXPX%nX(%)(%1)12XnXnXPXXExample 2-7 Calculate no.5 and no.99 percentile as below.Patients:Days in hospital:n=120,120X5%=6:1 2 3 4 5 6 7 8 9 117 118 119 120 1 2 2 2 3

15、 3 4 4 5 40 40 42 455(6)(7)11(34)3.5()22PXX天Weighting method Formula:(%)XXXLXiPLnXff Section 3 Measures of Dispersion RangeQuartileVariance and Standard DeviationCoefficient of Variation 1、Range The difference between the maximum and the minimum,R.2、QuartileQR=Lower QuartileUpper Quartile2575PP 25LQ

16、P75UQP3、Variance and Standard DeviationVariance:A measure of dispersion or variability(spread),calculated by squaring the value of the standard deviation.Sample variance:22()XN2SPopulation standard deviation Sample standard deviation2()XN2()1XXSn Sample standard deviation can also be calculated as b

17、elow:22()1XXnSnExample2-8 Calculate the standard deviation of values in table 2-12101,409.75,1705.09ffXfX 2(409.75)1705.091010.654(mmol/L)101 1S4、Coefficient of Variation CVSX100%Unit 4 Normal DistributionFig.2-3.Frequencies Distribution Approaches ti Normal Distribution1、ConceptMathematic function

18、expression:22()21()2Xf XeX2、CharacteristicBell Curve The normal curve was developed mathematically in 1733.Gauss used the normal curve to analyze astronomical data in 1809.The normal curve is often called the Gaussian distribution.The term bell-shaped curve is often used in everyday usage.Two Parame

19、ters The normal distribution is characterized by two parameters:the mean and the standard deviation sigma.The mean is a measure of location or center and the standard deviation is a measure of scale or spread.The mean can be any value between infinity and the standard deviation must be positive.Each

20、 possible value of and sigma define a specific normal distribution and collectively all possible normal distributions define the normal family.Fig.2-4 Position Transform of Normal Distribution00.10.20.30.40.5-4-3-2-101234 Fig.2-5 Illustration for the changing of normal distribution 00.10.20.30.40.50

21、.60.70.80.9-6-5-4-3-2-10123456=0.5=1=2 Distribution characteristics of ProportionFig.2-6.Proportion Rule of Normal Distribution 3、Standard Normal DistributionThe standard(or canonical)normal distribution is a special member of the normal family that has a mean of 0 and a standard deviation of 1.The

22、standard normal distribution is important since the probabilities and percentiles of any normal distribution can be computed from the standard normal distributionif and sigma are known.Unit 5 Medical Reference Range1、Concept The reference range is derived mathematically by taking the average value f

23、or the mass normal population and allowing for natural variation around that value.One-sided/Two-sidedMedical reference range include 、And is in common use 90%95%99%95%2、Calculate Medical Reference Range 1、Normal Distribution Method 2、Percentile MethodFormulaNormal Distribution MethodTwo-sided refer

24、ence range:One-sided reference range:or1a1 a/2aXs1 aaXsaXsaXsaXsTable 2-2 uCritical V alues Reference range(%)One-sided Two-sided 80 90 95 99 0.84 1.28 1.64 2.33 1.28 1.64 1.96 2.58 Example2-9 Evaluate the 95%reference range of values in example 2-1.Lower limitUpper limit aXs4.06 1.96 0.6542.78(/)mmol L4.06 1.96 0.6542.78(/)mmol LaXs4.06 1.96 0.6545.34(/)mmol LPercentile MethodTwo-sided reference range:One-sided reference range:2/1001002/100PP100P或100 100P 1 a1 aTHANK YOU!

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|