1、 中考数学5.3与圆有关的计算考点一弧长、扇形面积的计算1.(2020宁夏,6,3分)如图,等腰直角三角形ABC中,C=90,AC=,以点C为圆心画弧与斜边AB相切于点D,交AC于点E,交BC于点F,则图中阴影部分的面积是()A.1-B.C.2-D.1+24-1444答案答案A连接CD,则CDAB.ACB是等腰直角三角形,CD=ACsin45=1,图中阴影部分的面积为SACB-S扇形ECF=-=1-,故选A.1222290 136042.(2019山西,10,3分)如图,在RtABC中,ABC=90,AB=2,BC=2,以AB的中点O为圆心,OA的长为半径作半圆交AC于点D,则图中阴影部分的面
2、积为()A.-B.+C.2-D.4-35 3425 342332答案答案A作DEAB于点E,连接OD.在RtABC中,tanCAB=,CAB=30,BOD=2CAB=60,在RtODE中,OE=OD=,DE=OE=,S阴影=SABC-SAOD-S扇形BOD=ABBC-OADE-=22-=-.故选A.BCAB22 33312323321212260360OB12312332260(3)3605 3423.(2020四川南充,3,4分)如图,四个三角形拼成一个风车图形,若AB=2,当风车转动90时,点B运动路径的长度为()A.B.2C.3D.4答案答案A已知AB=2,所以点B绕点A旋转90时,点B
3、运动路径的长=,故选A.902180 4.(2018辽宁沈阳,10,2分)如图,正方形ABCD内接于O,AB=2,则的长是()A.B.C.2D.2AB3212答案答案A连接AC、BD交于点O,四边形ABCD是正方形,BAD=ABC=BCD=CDA=90,AC、BD是直径,点O与点O重合,AOB=90,AO=BO,AB=2,AO=2,的长为=.2AB90 21805.(2020内蒙古呼和浩特,11,3分)如图,ABC中,D为BC的中点,以D为圆心,BD长为半径画一条弧,交AC于点E,若A=60,ABC=100,BC=4,则扇形BDE的面积为.答案答案49解析解析在ABC中,A=60,ABC=10
4、0,C=180-60-100=20,D为BC的中点,BD=DE=CD.BDE=2C=40,BD=BC=2.S扇形BDE=.12240 2360496.(2019贵州贵阳,14,4分)如图,用等分圆的方法,在半径为OA的圆中,画出了如图所示的四叶幸运草,若OA=2,则四叶幸运草的周长是.答案答案42解析解析由题意得,四个半圆所在的圆的直径为OA=2,四叶幸运草的周长为4个半圆的弧长=2个圆的周长,四叶幸运草的周长=22=4.22227.(2020江西,21,9分)已知MPN的两边分别与O相切于点A,B,O的半径为r.(1)如图1,点C在点A,B之间的优弧上,MPN=80,求ACB的度数;(2)如
5、图2,点C在圆上运动,当PC最大时,要使四边形APBC为菱形,APB的度数应为多少?请说明理由;(3)若PC交O于点D,求第(2)问中对应的阴影部分的周长(用含r的式子表示).解析解析(1)如图1,连接OA,OB.PA,PB为O的切线,PAO=PBO=90.AOB+APB=180.APB=80,AOB=100.ACB=50.图1图2(2)如图2,当APB=60时,四边形APBC为菱形.连接OA,OB.由(1)可知AOB+APB=180.APB=60,AOB=120.ACB=60=APB.当PC经过圆心时,PC最大.PA,PB为O的切线,四边形APBC为轴对称图形.PA=PB,CA=CB,PC平
6、分APB和ACB.APB=ACB=60,APO=BPO=ACP=BCP=30.PA=PB=CA=CB.四边形APBC为菱形.(3)O的半径为r,OA=r,OP=2r.AP=r,PD=r.AOP=60,l=r.3AD60180r3C阴=PA+PD+l=r.AD313 8.(2019湖北武汉,21,8分)已知AB是O的直径,AM和BN是O的两条切线,DC与O相切于点E,分别交AM,BN于D,C两点.(1)如图1,求证:AB2=4ADBC;(2)如图2,连接OE并延长交AM于点F,连接CF.若ADE=2OFC,AD=1,求图中阴影部分的面积.图1图2解析解析解法一:(1)证明:如图,连接OD,OC,
7、OE.AD,BC,CD是O的切线,OAAD,OBBC,OECD,AD=ED,BC=EC,ODE=ADC,OCE=BCD.又ADBC,ODE+OCE=(ADC+BCD)=90,又ODE+DOE=90,DOE=OCE,又OED=CEO=90,121212ODECOE,=,即OE2=EDEC,4OE2=4ADBC,AB2=4ADBC.(2)如图,连接OD,OC,ADE=2OFC,ODE=OFC,又DEO=FEC,ODECFE,=,即OEEF=DEEC,OEEDECOEDEOEEFEC由(1)有OE2=DEEC,OE=EF,CD垂直平分OF.AOD=DOE=OFD=30,BOE=120.易得O的半径r
8、=OA=,BC=OBtan60=3.S阴影=2SOBC-S扇形OBE=3-.解法二:(1)证明:如图,过点D作DHBC,H为垂足,AD,BC,CD是O的切线,tan30AD33OAAD,OBBC,AD=ED,BC=EC,四边形ABHD是矩形,AB=DH,AD=BH.在RtCDH中,DH2=CD2-CH2,AB2=(AD+BC)2-(BC-AD)2,AB2=4ADBC.(2)如图,连接OD,OC,易得ADE=BOE,ADE=2OFC,BOE=2COF,COF=OFC,COF是等腰三角形.又OECD,CD垂直平分OF.下同解法一.考点二圆柱、圆锥的侧面展开图1.(2019云南,11,4分)一个圆锥
9、的侧面展开图是半径为8的半圆,则该圆锥的全面积是()A.48B.45C.36D.32答案答案A设半圆的半径为R,则S侧=R2=82=32,设圆锥的底面圆半径为r,则2r=2R,r=R=8=4,S底=r2=42=16,S全=S侧+S底=32+16=48.故选A.12121212122.(2020云南,13,4分)如图,正方形ABCD的边长为4,以点A为圆心,AD为半径画圆弧DE得到扇形DAE(阴影部分,点E在对角线AC上).若扇形DAE正好是一个圆锥的侧面展开图,则该圆锥的底面圆的半径是()A.B.1C.D.22212答案答案D在正方形ABCD中,AD=4,DAE=45,S扇形DAE=2.设以扇
10、形DAE为侧面展开图的圆锥底面圆的半径为r,则4r=2,r=.故选D.2454360123.(2019湖北黄冈,14,3分)用一个圆心角为120,半径为6的扇形作一个圆锥的侧面,则这个圆锥的底面圆的面积为.答案答案4解析解析扇形的弧长为=4,扇形的弧长即为这个圆锥底面圆的周长,设底面圆的半径为x,则2x=4,得x=2,所以底面圆的面积为22=4.1206180 考点一弧长、扇形面积的计算教师专用题组1.(2019浙江温州,7,4分)若扇形的圆心角为90,半径为6,则该扇形的弧长为()A.B.2C.3D.632答案答案Cl=3.故选C.180n R906180解题关键解题关键熟练掌握弧长公式l=
11、是解决本题的关键.180n R2.(2020内蒙古包头,9,3分)如图,AB是O的直径,CD是弦,点C,D在直径AB的两侧.若AOC AODDOB=2 7 11,CD=4,则的长为()A.2B.4C.D.CD222答案答案DAB是直径,AOD+DOB=180,又AOC AOD DOB=2 7 11,AOC=20,AOD=70,COD=AOC+AOD=90,RtCOD中,CO=DO=CD=4=2,的长为=.故选D.22222CD902 218023.(2019湖北武汉,9,3分)如图,AB是O的直径,M,N是(异于A,B)上两点,C是上一动点,ACB的平分线交O于点D,BAC的平分线交CD于点E
12、.当点C从点M运动到点N时,C,E两点的运动路径长的比是()A.B.C.D.ABMN223252答案答案A如图,由题意可知1=2,3=4.连接AD,可得2=6=1.5=1+3,EAD=4+6=3+1,DE=DA,即点E在以点D为圆心,AD为半径的圆上运动,6=2=45,AD=AO,设O的半径为r,劣弧MN所对的圆心角为n,则C,E两点的运动路径长的比是=.故选A.218022180n rnr24.(2020山西,8,3分)中国美食讲究色香味美,优雅的摆盘造型也会让美食锦上添花.图中的摆盘,其形状是扇形的一部分,图是其几何示意图(阴影部分为摆盘),通过测量得到AC=BD=12cm,C,D两点之间
13、的距离为4cm,圆心角为60,则图中摆盘的面积是()A.80cm2B.40cm2C.24cm2D.2cm2答案答案B连接AB,CD,OA=OB,AC=BD,OC=OD,CDAB,又O=60,OCD是等边三角形,OC=CD=4cm,OA=16cm,S阴影=S扇形AOB-S扇形COD=-=40cm2,故选B.260 163602604360解题关键解题关键判断OCD是等边三角形是解答本题的关键.5.(2018云南昆明,6,3分)如图,正六边形ABCDEF的边长为1,以点A为圆心,AB的长为半径,作扇形ABF,则图中阴影部分的面积为(结果保留根号和).答案答案-3 323解析解析S阴影=S正六边形A
14、BCDEF-S扇形ABF=612-=-.342120 13603 3236.(2020云南昆明,5,3分)如图,边长为2cm的正六边形螺帽,中心为点O,OA垂直平分边CD,垂足为B,AB=17cm,用扳手拧动螺帽旋转90,则点A在该过程中所经过的路径长为cm.3答案答案10解析解析连接OC,OD,则COD=60,OC=OD=2cm,COB=COD=30,OB=OCcos30=3cm,OA=OB+AB=20cm,点A所经过的路径长=10(cm).31290201807.(2020新疆,14,5分)如图,O的半径是2,扇形BAC的圆心角为60,若将扇形BAC剪下围成一个圆锥,则此圆锥的底面圆的半径
15、为.答案答案33解析解析连接OA,作ODAC于点D.在直角OAD中,OA=2,OAD=BAC=30,则AD=OAcos30=,则AC=2AD=2,则扇形的弧长是=.设此圆锥的底面圆的半径是r,则2r=,解得r=.1233602 31802 332 3333故此圆锥的底面圆的半径为.338.(2018新疆,12,5分)如图,ABC是O的内接正三角形,O的半径为2,则图中阴影部分的面积是.答案答案43解析解析由题意得BAC=60,BOC=120,S阴影=22=.120360439.(2019河南,14,3分)如图,在扇形AOB中,AOB=120,半径OC交弦AB于点D,且OCOA.若OA=2,则阴
16、影部分的面积为.3答案答案+3解析解析OCOA,AOD=90,AOB=120,OA=OB=2,OAD=BOC=ABO=30,OD=AOtan30=2,BD=2,过点O作OEAD于点E,则OE=.S阴影=SAOD+S扇形BOC-SBOD=22+-2=+.33123230(2 3)3601233思路分析思路分析根据扇形AOB中,AOB=120,AOOC,求得OAD=BOC=ABO=30,再分别求得OD、BD的长,计算SAOD,SBOD,S扇形BOC,进而求阴影部分的面积.10.(2019吉林长春,18,7分)如图,四边形ABCD是正方形,以边AB为直径作O,点E在BC边上,连接AE交O于点F,连接
17、BF并延长交CD于点G.(1)求证:ABE BCG;(2)若AEB=55,OA=3,求的长.(结果保留)BF解析解析(1)证明:四边形ABCD是正方形,AB为直径,F为O上的一点,ABE=BCG=AFB=90,BAF+ABF=90,ABF+EBF=90,EBF=BAF.在ABE和BCG中,ABE BCG(ASA).(2)连接OF.ABE=AFB=90,AEB=55,BAE=90-55=35,BOF=2BAE=70.OA=3,的长=.,BAFEBFABBCABEBCG BF70 3180 76思路分析思路分析(1)要证ABE BCG,根据正方形的性质,已经有一组边和一组直角对应相等,再根据直径所
18、对的圆周角是直角,同角的余角相等得到BAF=EBF,最后利用ASA证明即可;(2)要求弧长,必须求出弧所在圆的半径和弧所对的圆心角度数,本题半径已知,通过连接OF,构造出圆心角,把它转移到同弧所对的圆周角来计算即可.11.(2019广东,22,7分)在如图所示的网格中,每个小正方形的边长为1,每个小正方形的顶点叫格点,ABC的三个顶点均在格点上,以点A为圆心的与BC相切于点D,分别交AB、AC于点E、F.(1)求ABC三边的长;(2)求图中由线段EB、BC、CF及所围成的阴影部分的面积.EFFE解析解析(1)由题图可知AB2=22+62=40,AB=2.(1分)AC2=22+62=40,AC=
19、2.(2分)BC2=42+82=80,BC=4.(3分)(2)连接AD,由(1)知AB2+AC2=BC2,AB=AC,10105ABC是等腰直角三角形,BAC=90.(4分)以点A为圆心的与BC相切于点D,ADBC,AD=BC=2,(5分)SABC=BCAD=42=20,又S扇形EAF=(2)2=5,S阴影=20-5.(7分)EF125121255145思路分析思路分析(1)在网格中,求点在格点上的线段的长度,常用的方法是构造直角三角形,利用勾股定理求出线段的长度;(2)求不规则图形的面积常用的方法是割补法,本题需用ABC的面积减去扇形EAF的面积,利用勾股定理的逆定理求得圆心角,由过切点的半
20、径垂直切线,可知ADBC,由ABC是等腰直角三角形,可知半径AD等于BC长的一半.进而求得扇形EAF的面积.12.(2018黑龙江齐齐哈尔,20,8分)如图,以ABC的边AB为直径画O,交AC于点D,半径OEBD,连接BE,DE,BD,设BE交AC于点F,若DEB=DBC.(1)求证:BC是O的切线;(2)若BF=BC=2,求图中阴影部分的面积.解析解析(1)证明:AB是O的直径,ADB=90,A+ABD=90,(1分)又A=DEB,DEB=DBC,A=DBC,(2分)DBC+ABD=90,OBC=90,即OBBC.又OB为O的半径,BC是O的切线.(3分)(2)BF=BC=2且ADB=90,
21、CBD=FBD,(4分)又OEBD,FBD=OEB.OE=OB,OEB=OBE,(5分)CBD=FBD=OBE=ABC=90=30.(6分)1313C=60,AB=BC=2,O的半径为.(7分)如图,连接OD,阴影部分面积为S扇形OBD-SOBD=()2-()2=-.(8分)3331631232323 34考点二圆柱、圆锥的侧面展开图1.(2020辽宁营口,15,3分)一个圆锥的底面半径为3,高为4,则此圆锥的侧面积为.答案答案15解析解析由圆锥的底面半径为3,高为4,可得母线长为5,所以S圆锥侧=35=15.2.(2019黑龙江齐齐哈尔,13,3分)将圆心角为216,半径为5cm的扇形围成一
22、个圆锥的侧面,那么围成的这个圆锥的高为cm.答案答案4解析解析设圆锥底面圆的半径为rcm,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面圆的周长,得2r=,解得r=3,圆锥的高为=4(cm).216 5180225-33.(2019江苏南京,12,2分)无盖圆柱形杯子的展开图如图所示.将一根长为20cm的细木筷斜放在该杯子内,木筷露在杯子外面的部分至少有cm.答案答案5解析解析由题意可得,杯子内的木筷长度最多有=15cm,则木筷露在杯子外面的部分至少有20-15=5cm.221294.(2018湖北黄冈,13,3分)如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5
23、cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为cm(杯壁厚度不计).答案答案20解析解析如图,将圆柱侧面展开,延长AC至A,使AC=AC,连接AB,则线段AB的长为蚂蚁到蜂蜜的最短距离.过B作BBAD,垂足为B.在RtABB中,BB=16,AB=14-5+3=12,所以AB=20,即蚂蚁从外壁A处到内壁B处的最短距离为20cm.22 BBAB221612A组20182020年模拟基础题组时间:45分钟分值:50分一、选择题一、选择题(每小题3分,共12分)1.(2019黑龙江哈尔滨松北一模,8)一个扇形的圆心角是120
24、,面积为3cm2,那么这个扇形的半径是()A.1cmB.3cmC.6cmD.9cm答案答案B设扇形的半径为Rcm,R0,由题意得3=,解得R=3,R0,R=3,这个扇形的半径为3cm.故选B.2120360R2.(2020四川成都一诊,9)如图,ABC内接于O,A=60,OMBC于点M,若OM=2,则劣弧BC的长为()A.4B.C.D.4383163答案答案C连接OB、OC,由圆周角定理得,BOC=2A=120,OB=OC,OBC=OCB,OBC=(180-120)=30,又OMBC,OB=2OM=4,劣弧BC的长=,故选C.121204180833.(2020云南红河州开远模拟,11)如图,
25、O的直径AB=6,若BAC=50,则劣弧AC的长为()A.2B.C.D.833443答案答案D如图,连接CO,AO=CO,ACO=BAC=50,AOC=80,劣弧AC的长为=,故选D.80 3180 434.(2019四川成都双流一模,10)如图,ABCD中,B=70,BC=6,以AD为直径的O交CD于点E,则的长为()A.B.C.D.DE13237643答案答案B连接OE,如图所示.四边形ABCD是平行四边形,D=B=70,AD=BC=6,OA=OD=3.OD=OE,OED=D=70,DOE=180-270=40,的长=.故选B.DE40 318023二、填空题二、填空题(每小题3分,共9分
26、)5.(2020辽宁鞍山铁东一模,9)一圆锥的底面半径为2cm,母线长为3cm,则侧面积为.答案答案6cm2解析解析圆锥的侧面积为322=6(cm2).126.(2020甘肃兰州一诊,15)如图,四边形ABCD内接于半径为6的O,ABC=100,则劣弧AC的长为.答案答案163解析解析连接OA、OC,四边形ABCD内接于O,D+ABC=180,D=180-ABC=80,由圆周角定理得AOC=2D=160,劣弧AC的长为=.160 61801637.(2019甘肃定西一诊,15)一个扇形的弧长是20cm,面积是240cm2,则这个扇形的圆心角是度.答案答案150解析解析设扇形的圆心角为n,弧长为
27、l,半径为r,则扇形的面积为lr=240cm2,又l=20cm,r=24cm,=20,n=150.1224180n 三、解答题三、解答题(共29分)8.(2020吉林长春一模,18)如图,E是RtABC的斜边AB上一点,以AE为直径的O与边BC相切于点D,交边AC于点F,连接AD.(1)求证:AD平分BAC;(2)若AE=2,CAD=25,求劣弧EF的长.解析解析(1)证明:如图,连接OD,O与BC相切于点D,ODBC,ODB=90.C=90,C=ODB=90,ODAC.CAD=ODA.OA=OD,OAD=ODA,OAD=CAD,AD平分BAC.(2)如图,连接OF,AD平分BAC,且CAD=
28、25,BAC=2DAC=50,EOF=2EAC=100,劣弧EF的长为=.100 1180599.(2019云南昆明模拟,22)如图,点A是直线AM与O的交点,点B在O上,BDAM,垂足为D,BD与O交于点C,OC平分AOB,B=60.(1)求证:AM是O的切线;(2)若O的半径为4,求图中阴影部分的面积(结果保留和根号).解析解析(1)证明:如图,B=60,OB=OC,BOC是等边三角形,1=3=60.OC平分AOB,1=2,2=3,OABD.BDM=90,OAM=90,又OA为O的半径,AM是O的切线.(2)连接AC.2=60,OA=OC,AOC是等边三角形,OAC=60,CAD=30.O
29、C=AC=4,CD=2,AD=2,S阴影=S梯形OADC-S扇形OAC=(4+2)2-=6-.3123260 436038310.(2019黑龙江齐齐哈尔一模,21)RtABC中,C=90,点E在AB上,BE=AE=2,以AE为直径作O交AC于点F,交BC于点D,且点D为切点,连接AD,EF.(1)求证:AD平分BAC;(2)求阴影部分面积.(结果保留)12解析解析(1)证明:连接OD交EF于M.BC切O于D,ODBC,ODB=90.C=90,ODB=C,ODAC,DAC=ODA.OD=OA,OAD=ODA,OAD=DAC,AD平分BAC.(2)连接OF.AE是直径,AFE=90,又C=90,
30、EFBC,=.C=AFE=ODC=90,四边形DMFC是矩形,DM=CF=AF.易知OM=AF,OM=DM=OD=OE,OEM=30,EOF=120.BE=AE=2,AE=2OE,OE=2,OM=1,EM=,则EF=2,S阴影=S扇形OEF-SOEF=-21=-.CFAFBEAE121212121212332120 2360123433B组20182020年模拟提升题组时间:45分钟分值:50分一、选择题一、选择题(每小题3分,共12分)1.(2019内蒙古鄂尔多斯3月模拟,8)若圆锥的底面半径r为6cm,高h为8cm,则圆锥的侧面积为()A.30cm2B.60cm2C.48cm2D.80cm
31、2答案答案B设圆锥母线长为lcm,由勾股定理得l=10,圆锥侧面展开图的面积S=2610=60(cm2),所以圆锥的侧面积为60cm2.故选B.2286122.(2020广西崇左江州一模,9)如图,在边长为8的菱形ABCD中,DAB=60,以点D为圆心,菱形的高DF为半径画弧,交AD于点E,交CD于点G,则图中阴影部分的面积是()A.18-3B.18-C.32-16D.18-9333答案答案C四边形ABCD是边长为8的菱形,DAB=60,AD=AB=8,ADC=180-DAB=120.DF是菱形的高,DFAB,DF=ADsin60=8=4,S阴影=S菱形ABCD-S扇形DEG=84-=32-1
32、6.故选C.32332120(4 3)36033.(2020云南曲靖马龙一模,8)如图,在ABC中,AB=4,若将ABC绕点B顺时针旋转60,点A的对应点为点A,点C的对应点为点C,连接AB,点D为AB的中点,连接AD,则点A的运动路径与线段AD、AD围成的图形(阴影部分)的面积是()A.-2B.-4C.-2D.4-833833433343答案答案A如图,连接AA.由旋转得BA=BA,ABA=60,ABA是等边三角形,BA=BA=AA=4.DB=DA,ADBA,AD=2,S阴影=S扇形BAA-SADB=-22=-2,故选A.224-23260 43601238334.(2018湖北孝感孝南一模
33、,8)如图,在RtABC中,A=90,BC=2,以BC的中点O为圆心的O分别与AB,AC相切于D,E,则劣弧DE的长为()A.B.C.D.2242答案答案B连接OE、OD,设O的半径为r.OD是ABC的中位线,OD=AC,AC=2r,同理,AB=2r,AB=AC,B=45.BC=2,由勾股定理可知AB=2,r=1,又易知DOE=90,劣弧DE的长为=,故选B.12290 11802O分别与AB,AC相切于D,E,OEAC,ODAB.A=90,即ABAC,ODAC.O是BC的中点,二、填空题二、填空题(每小题3分,共9分)5.(2020黑龙江绥化一模,14)如图,正方形ABCD中,AB=2,将线
34、段CD绕点C顺时针旋转90得到线段CE,将线段BD绕点B顺时针旋转90得到线段BF,连接EF,则图中阴影部分的面积是.答案答案6-解析解析由旋转知DCE=90,DBF=90,又BCD=90,故点B,C,E在同一条直线上.过F作FMBE于M,则FME=FMB=90.四边形ABCD是正方形,AB=2,DC=BC=AB=2,DBC=45.在RtBDC中,由勾股定理得BD=2,BF=BD=2,又FBE=90-45=45,BM=FM=2=2,点M与点C重合,阴影部分的面积S=SBCD+SBFE+S扇形DCE-S扇形DBF22222=22+42+-=6-.12122902360290(2 2)3606.(
35、2020湖北黄石模拟,15)如图,一个半径为r的圆形纸片在边长为a(a2r)的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片“不能接触到的部分”的面积是.3答案答案(3-)r23解析解析如图,当圆形纸片运动到与BAC的两边相切的位置时,过圆形纸片的圆心O1作BAC两边的垂线,垂足分别为D,E,连接AO1,在RtADO1中,O1AD=30,O1D=r,AD=r,=O1DAD=r2.则=2=r2.易知DO1E=120,则=r2,圆形纸片“不能接触到的部分”的面积为3=(3-)r2.31ADOS12321ADO ES四边形1ADOS31O DES扇形3223-3rr37.(2018湖北襄阳保
36、康4月模拟,15)在RtABC中,ACB=90,AC=2,BC=1,将ABC绕AB所在直线旋转一周,得到的几何体的侧面积为.答案答案6 55解析解析如图,过C作COAB于O,由已知得,AB=,又OCAB=ACBC,OC=,将ABC绕AB所在直线旋转一周,得到的几何体的侧面积=22+21=.2221512122 152 55122 55122 556 55三、解答题三、解答题(共29分)8.(2020云南红河州开远模拟,21)如图,点B、C、D都在O上,过点C作ACBD交OB的延长线于点A,连接CD,且CDB=OBD=30,BD=6cm.(1)求证:AC是O的切线;(2)求O的半径长;(3)求图
37、中阴影部分的面积(结果保留).3解析解析(1)证明:连接OC,CDB=30,BOC=60.ACBD,A=OBD=30,BOC+A=90.ACO=90.又OC为O的半径,AC为O的切线.(2)设OC交BD于E,由(1)得,OCAC,ACBD,OCBD,E为BD的中点.BD=6cm,BE=3cm,在RtOBE中,sinBOE=sin60=,33BEOB=,解得OB=6cm,即O的半径长为6cm.(3)CDB=OBD,OACD,又ACBD,四边形ABDC是平行四边形,AC=BD=6cm,S阴影=SRtOAC-S扇形OBC=ACOC-=66-=(18-6)cm2.答:阴影部分的面积为(18-6)cm2
38、.323 3OB312260360OC1232606360339.(2020湖北武汉青山备考,21)如图,在RtABC中,B=90,BAC的平分线AD交BC于点D,点E在AC上,以AE为直径的O经过点D,交AB于点F.(1)求证:BC是O的切线;CD2=CECA;(2)若点F是劣弧AD的中点,且CE=3,试求阴影部分的面积.解析解析(1)证明:连接OD.AD平分BAC,DAB=DAC.OD=OA,DAO=ODA,DAB=ODA,DOAB,而B=90,ODC=90,又OD是O的半径,BC是O的切线.连接DE,BC是O的切线,CDE=DAC,又C=C,CDECAD,=,CD2=CECA.CDCAC
39、ECD(2)连接DF、OF,设圆O的半径为R.点F是劣弧AD的中点,OF垂直平分DA,且DF=AF,FDA=FAD.由知ODA=DAF,ADO=DAO=FDA=FAD,AF=DF=OA=OD,四边形OAFD是菱形,故S阴影=S扇形DFO,又OF=OA=OD,OFD、OFA均是等边三角形,FAO=60,又在ABC中,B=90,C=30,又ODBC,OD=OC=(OE+EC),而OE=OD,CE=OE=R=3,S阴影=S扇形DFO=.121226033603210.(2019四川宜宾翠屏一诊,23)如图,AB是O的直径,BAC=90,四边形EBOC是平行四边形,EB交O于点D,连接CD并延长交AB
40、的延长线于点F.(1)求证:CF是O的切线;(2)若F=30,EB=8,求图中阴影部分的面积.(结果保留根号和)解析解析(1)证明:连接OD,如图.四边形EBOC是平行四边形,OCBE,1=3,2=4.OB=OD,3=4,1=2.在ODC和OAC中,ODC OAC,ODC=OAC=90,ODCD,12,ODOAOCOC 又OD为O的半径,CF是O的切线.(2)F=30,ODCF,FOD=60,1=2=60.四边形EBOC是平行四边形,OC=BE=8.在RtAOC中,AOC=60,OA=OC=4,AC=OA=4.S阴影=S四边形AODC-S扇形AOD=244-=16-.1233123212043
41、603163一、选择题一、选择题(每小题5分,共25分)1.(2019辽宁葫芦岛,9)如图,在O中,BAC=15,ADC=20,则ABO的度数为()A.70B.55C.45D.35答案答案B连接OA、OC.BAC=15,ADC=20,AOB=AOC+BOC=2(ADC+BAC)=70.OA=OB,ABO=OAB=(180-AOB)=55.故选B.122.(2020浙江温州,7)如图,菱形OABC的顶点A,B,C在O上,过点B作O的切线交OA的延长线于点D.若O的半径为1,则BD的长为()A.1B.2C.D.23答案答案D如图,连接OB.四边形OABC是菱形,OA=AB,又OA=OB,OA=OB
42、=AB,AOB=60.BD是O的切线,DBO=90,OB=1,BD=OB=.故选D.33思路分析思路分析连接OB,利用菱形的性质和圆的性质可得AOB=60,解直角三角形求出BD的长即可.解题关键解题关键解决本题的关键是熟练运用菱形的性质和圆的有关性质.3.(2019湖北十堰,8)如图,四边形ABCD内接于O,AECB交CB的延长线于点E,若BA平分DBE,AD=5,CE=,则AE=()A.3B.3C.4D.213233答案答案D连接AC,如图.BA平分DBE,1=2.四边形ABCD是圆内接四边形,ABC+CDA=180.又1+ABC=180,1=CDA.2=3,3=CDA,AC=AD=5.AE
43、CB,AEC=90,AE=2.故选D.22-AC CE225-(13)34.(2019湖南娄底,8)如图,边长为2的等边ABC的内切圆的半径为()A.1B.C.2D.2333答案答案A连接AO、CO,延长CO交AB于H,如图.O为ABC的内心,CH平分BCA,AO平分BAC.ABC为等边三角形,CAB=60,CHAB,OAH=30,AH=BH=AB=.在RtAOH中,tanOAH=,OH=AHtanOAH=1,123OHAH333ABC内切圆的半径为1.故选A.5.(2020山东潍坊,10)如图,在RtAOB中,AOB=90,OA=3,OB=4,以点O为圆心,2为半径的圆与OB交于点C,过点C
44、作CDOB交AB于点D,点P是边OA上的动点.当PC+PD最小时,OP的长为()A.B.C.1D.123432答案答案B延长CO交O于点E,连接DE交OA于点P,此时PC+PD最小.CDOB,AOB=90,CDAO,=,=,CD=.CDAO,=,即=,解得PO=.BCBOCDAO243CD32EOECPODC2432PO34方法技巧方法技巧本题是“一动两定”的最值问题,作出一个定点关于动点所在直线的对称点,利用“两点之间,线段最短”解决问题.二、填空题二、填空题(每小题5分,共20分)6.(2019黑龙江鸡西,7)若一个圆锥的底面圆的周长是5cm,母线长是6cm,则该圆锥的侧面展开图的圆心角度
45、数是.答案答案150解析解析由圆锥的底面圆的周长是5cm,可得围成圆锥侧面的扇形的弧长为5cm,=5,n=150,即圆锥的侧面展开图的圆心角为150.6180n 7.(2019内蒙古鄂尔多斯,13)如图,ABC中,AB=AC,以AB为直径的O分别与BC,AC交于点D,E,过点D作DFAC于点F.若AB=6,CDF=15,则阴影部分的面积是.答案答案3-9 34解析解析连接OE.DFAC,DFC=90,又CDF=15,C=75.AB=AC,ABC=C=75,OAE=180-B-C=30.OA=OE,OAE=OEA,AOE=180-2OAE=120.作OGAE,交AE于点G.AB=6,OA=OB=
46、OE=3.在RtOEG中,OG=OEsinOEG=3sin30=,GE=OEcos30=3=.AE=2GE=3.SOAE=AEOG=3=.S阴影=S扇形OAE-SOAE=32-=3-.3232323312123329431203609 349 348.(2019湖北黄石,15)如图,RtABC中,A=90,CD平分ACB交AB于点D,O是BC上一点,经过C、D两点的O分别交AC、BC于点E、F,AD=,ADC=60,则劣弧CD的长为.3答案答案43解析解析如图,连接DF,OD.CF是O的直径,CDF=90.ADC=60,A=90,ACD=30.CD平分ACB,DCF=ACD=30.OC=OD,
47、OCD=ODC=30,COD=120.在RtCAD中,CD=2AD=2.在RtFCD中,CF=4,O的半径为2,劣弧CD的长为=.3cos30CD2 3321202180432021年中考复习 5.3与圆有关的计算2021年中考复习 5.3与圆有关的计算9.(2019湖南湘潭,16)九章算术是我国古代数学成就的杰出代表作,其中方田章计算弧田面积所用的经验公式是:弧田面积=(弦矢+矢2),弧田是由圆弧和其所对的弦围成的(如图中的阴影部分),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,运用垂径定理(当半径OC弦AB时,OC平分AB)可以求解.现已知弦AB=8米,半径等于5米的
48、弧田,按照上述公式计算出弧田的面积为平方米.122021年中考复习 5.3与圆有关的计算2021年中考复习 5.3与圆有关的计算答案答案102021年中考复习 5.3与圆有关的计算2021年中考复习 5.3与圆有关的计算解析解析由垂径定理可得AD=BD=4米,在直角三角形OAD中,由勾股定理可得OD=3米,则CD=2米,则弧田的面积=(82+22)=10(平方米).122021年中考复习 5.3与圆有关的计算2021年中考复习 5.3与圆有关的计算三、解答题三、解答题(共4小题,共55分)10.(10分)(2019辽宁锦州,22)如图,M,N是以AB为直径的O上的点,且=,弦MN交AB于点C,
49、BM平分ABD,MFBD于点F.(1)求证:MF是O的切线;(2)若CN=3,BN=4,求CM的长.ANBN2021年中考复习 5.3与圆有关的计算2021年中考复习 5.3与圆有关的计算解析解析(1)证明:连接OM.OM=OB,OMB=OBM.BM平分ABD,OBM=MBF,OMB=MBF,OMBF.MFBD,OMMF,即OMF=90,又OM是O的半径,MF是O的切线.(2)如图,连接AN,ON.=,AN=BN=4.ANBN2021年中考复习 5.3与圆有关的计算2021年中考复习 5.3与圆有关的计算AB是O的直径,=,ANB=90,ONAB,AB=4,AO=BO=ON=2,OC=1,AC
50、=2+1,BC=2-1.A=NMB,ANC=MBC,ACNMCB,=,CM=.ANBN22ANBN2222-CNON9-822ACCMCNBCAC BCCN(2 21)(2 2-1)3732021年中考复习 5.3与圆有关的计算2021年中考复习 5.3与圆有关的计算11.(15分)(2019内蒙古通辽,23)如图,ABC内接于O,AB是O的直径,AC=CE,连接AE交BC于点D,延长DC至F点,使CF=CD,连接AF.(1)判断直线AF与O的位置关系,并说明理由;(2)若AC=10,tanCAE=,求AE的长.342021年中考复习 5.3与圆有关的计算2021年中考复习 5.3与圆有关的计
侵权处理QQ:3464097650--上传资料QQ:3464097650
【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。