ImageVerifierCode 换一换
格式:PPT , 页数:96 ,大小:4.67MB ,
文档编号:5163443      下载积分:28 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-5163443.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(晟晟文业)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(61 平行四边形对角线的性质 大赛获奖课件 公开课一等奖课件.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

61 平行四边形对角线的性质 大赛获奖课件 公开课一等奖课件.ppt

1、6.1 平行四边形的性质第六章 平行四边形导入新课讲授新课当堂练习课堂小结第2课时 平行四边形对角线的性质学习目标1.探索并掌握平行四边形对角线性质;(重点)2.灵活运用平行四边形的性质进行推理和计算.导入新课导入新课分享蛋糕的故事 视频中的小朋友所说的那块蛋糕是最大的吗?为什么?讲授新课讲授新课平行四边形的对角线的性质一 我们知道平行四边形的边角这两个基本要素的性质,那么平行四边形的对角线又具有怎样的性质呢?ABCDO 如图,在ABCD中,连接AC,BD,并设它们相交于点O.OA与OC,OB与OD有什么关系?猜一猜OA=OC,OB=OD这个结论正确吗?ABCDO量一量 拿出手中的平行四边形纸

2、片,测量出四条线段的长度,验证你的猜想是否正确?这个方法准确吗?验一验几何画板验证(点击)A AD DO OC CB BD DB BO OC CA A证一证已知:如图:ABCD的对角线AC、BD相交于点O.求证:OA=OC,OB=OD.证明:四边形ABCD是平行四边形,AD=BC,ADBC.1=2,3=4.AODCOB(ASA).OA=OC,OB=OD.ACDBO3241ACDBO平行四边形的对角线互相平分.要点归纳u平行四边形的性质应用格式:1.ABO CDO,AOD COB,ABD CDB,ABC CDA;2.ABO、AOD、DOC、COB的面积相等,且都等于平行四边形面积的四分之一.AC

3、DBO重要结论A AC CD DB BO O其实四块蛋糕是一样大的典例精析例1:在ABCD中,AC与BD交于点O,OA=12cm,OB=19cm,则AC=cm,BD=cm.BCDAO2438598变式3 在ABCD中,AC=24,BD=38,AB=m,则m的取值范围是()A.24m39 B.14m62C.7m31 D.7m12 BCDAOC 例2 如图,平行四边形ABCD中,对角线AC、BD相交于点O,ABAC,AB=3,AD=5,求BD的长.解:四边形ABCD是平行四边形BC=AD=5ABACABC是直角三角形AO=AC=212BD=2BO=2 132222AC=BC-AB=5-3=4222

4、2BC=AB+AO=3-2=13例3 如图,平行四边形ABCD的对角线AC与BD相交于点O,过点O作直线与AD,BC分别相交于点E、F,求证:OE=OF.证明:四边形ABCD是平行四边形,DO=BO,ADBC.ODE=OBF.DOEBOF(ASA).OE=OF.DOE=BOF,O OD DC CB BA AE EF FO OD DC CB BA AE EF F(1)(1)(2)(2)议一议:在上述问题中,若直线EF与边DA、BC的延长线交于点E、F,(如图2),上述结论是否仍然成立?试说明理由议一议:在上述问题中,若将直线EF绕点O旋转至下图(3)的位置时,上述结论是否仍然成立?F FE EF

5、 FO OD DC CB BA AE E(1)(1)O OD DC CB BA AE EF F(3)(3)(3)(3)(4)(4)O OD DC CB BA AE EF F(4)(4)过平行四边形的对角线交点作直线与平行四边形的一组对边或对边的延长线相交,得到的线段总相等,且这条直线二等分平行四边形的面积归纳总结 如图,的面积是12cm2,则图中阴影部分的面积是 .。试一试6 cm2当堂练习当堂练习1.如图,ABCD的对角线AC、BD相交于点O,且AC+BD=16,CD=6,则ABO的周长是()A.10 B.14 C.20 D.22 BBCDAO2.下列性质中,平行四边形不一定具备的是()A.

6、对边相等 B.对角相等 C.对角线互相平分 D.是轴对称图形 D 3.如图,在 ABCD中,BF平分ABC,交AD于点F,CE平分BCD,交AD于点E,AB=6,EF=2,则BC的长为 .10A B C D E F 4.如图,四边形ABCD是平行四边形,AB=10,AD=8,ACBC,求BC、CD、AC、OA的长.810BCDAO解:ABC是直角三角形.又ACBCBC=AD=8,CD=AB=1022ACABBC221086又OA=OC132OAAC?四边形ABCD是平行四边形.5.如图,平行四边形ABCD的对角线AC、BD相交于点O,E,F分别是OA,OC的中点,连接BE,DF.求证:BE=D

7、F.证明:四边形ABCD是平行四边形,对角线AC、BD交于点O,OB=OD,OA=OC.E,F分别是OA,OC的中点,11,22OEOA OFOC.OEOF,BOEDOF Q.BEODFO SAS ().BEDFABCDOEF平行四边形对角线互相平分课堂小结课堂小结对角线的性质见学练优本课时练习课后作业课后作业1.3 线段的垂直平分线第一章 三角形的证明导入新课讲授新课当堂练习课堂小结 第1课时 线段的垂直平分线 1.理解线段垂直平分线的概念;2.掌握线段垂直平分线的性质定理及逆定理;(重点)3.能运用线段的垂直平分线的有关知识进行证明或计算.(难点)学习目标导入新课导入新课问题引入某区政府为

8、了方便居民的生活,计划在三个住宅小区A、B、C之间修建一个购物中心,试问该购物中心应建于何处,才能使得它到三个小区的距离相等?ABC观察:已知点A与点A关于直线l 对称,如果线段AA沿直线l折叠,则点A与点A重合,AD=AD,1=2=90,即直线l 既平分线段AA,又垂直线段AA.lAAD21(A)讲授新课讲授新课线段垂直平分线的性质一 我们把垂直且平分一条线段的直线叫作这条线段的垂直平分线.由上可知:线段是轴对称图形,线段的垂直平分线是它的对称轴.知识要点如图,直线l垂直平分线段AB,P1,P2,P3,是l 上的点,请你量一量线段P1A,P1B,P2A,P2B,P3A,P3B的长,你能发现什

9、么?请猜想点P1,P2,P3,到点A 与点B 的距离之间的数量关系ABlP1P2P3探究发现P1A _P1BP2A _ P2BP3A _ P3B 作关于直线l 的轴反射(即沿直线l 对折),由于l 是线段AB的垂直平分线,因此点A与点B重合.从而线段PA与线段PB重合,于是PA=PB.(A)(B)B APl活动探究 猜想:点P1,P2,P3,到点A 与点B 的距离分别相等 命题:线段垂直平分线上的点和这条线段两个端点的距离相等.由此你能得到什么结论?你能验证这一结论吗?如图,直线lAB,垂足为C,AC=CB,点P 在l 上求证:PA=PB证明:lAB,PCA=PCB又 AC=CB,PC=PC,

10、PCA PCB(SAS)PA=PBPABlC验证结论微课-证明线段垂直平分线的性质 线段垂直平分线上的点到这条线段两个端点的距离相等.线段垂直平分线的性质定理:总结归纳例1 如图,在ABC中,ABAC20cm,DE垂直平分AB,垂足为E,交AC于D,若DBC的周长为35cm,则BC的长为()A5cmB10cmC15cmD17.5cm典例精析C解析:DBC的周长为BCBDCD35cm,又DE垂直平分AB,ADBD,故BCADCD35cm.ACADDC20cm,BC352015(cm).故选C.方法归纳:利用线段垂直平分线的性质,实现线段之间的相互转化,从而求出未知线段的长练一练:1.如图所示,直

11、线CD是线段AB的垂直平分线,点P为直线CD上的一点,且PA=5,则线段PB的长为()A.6 B.5 C.4 D.32.如图所示,在ABC中,BC=8cm,边AB的垂直平分线交AB于点D,交边AC于点E,BCE的周长等于18cm,则AC的长是 .B10cmPABCD图图ABCDE图图定理:线段垂直平分线上的点到这条线段两个端点的距离相等.逆命题到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.它是真命题吗?你能证明吗?线段垂直平分线的判定二想一想:如果PA=PB,那么点P是否在线段AB的垂直平分线上呢?记得要分点P在线段AB上及线段AB外两种情况来讨论(1)当点P在线段AB上时,PA=

12、PB,点P为线段AB的中点,显然此时点P在线段AB的垂直平分线上;(2)当点P在线段AB外时,如右图所示.PA=PB,PAB是等腰三角形.过顶点P作PCAB,垂足为点C,底边AB上的高PC也是底边AB上的中线.即 PCAB,且AC=BC.直线PC是线段AB的垂直平分线,此时点P也在线段AB的垂直平分线上.微课-线段垂直平分线的逆命题 到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.线段垂直平分线的性质定理的逆定理:应用格式:PA=PB,点P 在AB 的垂直平分线上PAB作用:判断一个点是否在线段的垂直平分线上.总结归纳例2:已知:如图ABC中,AB=AC,O是ABC内一点,且OB=O

13、C.求证:直线AO垂直平分线段BC.证明:AB=AC,A在线段BC的垂直平分线(到一条线段两个端点距离相等的点,在这条线段的垂直平分线上).同理,点O在线段BC的垂直平分线.直线AO是线段BC的垂直平分线(两点确定一条直线).你还有其他证明方法吗?利用三角形的全等证明证明:延长AO交BC于点D,ABAC,AOAO,OBOC ,ABOACO(SSS).BAO=CAO,AB=AC,AOBCOBOC ,ODOD ,RTDBORTDCO(HL).BDCD.直线AO垂直平分线段BC.试一试:已知:如图,点E是AOB的平分线上一点,ECOA,EDOB,垂足分别为C,D,连接CD.求证:OE是CD的垂直平分

14、线.ABOEDC证明:OE平分AOB,ECOA,EDOB,DE=CE(角平分线上的点到角的两边的距离相等).OE是CD的垂直平分线.当堂练习当堂练习1.如图所示,AC=AD,BC=BD,则下列说法正确的是 ()AAB垂直平分CD;B CD垂直平分AB;CAB与CD互相垂直平分;DCD平分 ACB A2.已知线段AB,在平面上找到三个点D、E、F,使DADB,EAEB,FAFB,这样的点的组合共有种.无数3.下列说法:若点P、E是线段AB的垂直平分线上两点,则EAEB,PAPB;若PAPB,EAEB,则直线PE垂直平分线段AB;若PAPB,则点P必是线段AB的垂直平分线上的点;若EAEB,则经过

15、点E的直线垂直平分线段AB其中正确的有 (填序号).4.如图,ABC中,AB=AC,AB的垂直平分线交AC于E,连接BE,AB+BC=16cm,则BCE的周长是 cm.ABCDE165.已知:如图,点C,D是线段AB外的两点,且AC=BC,AD=BD,AB与CD相交于点O.求证:AO=BO.证明:AC=BC,AD=BD,点C和点D在线段AB的垂直平分线上,CD为线段AB的垂直平分线.又 AB与CD相交于点O,AO=BO.课堂小结课堂小结线段的垂直平分的性质和判定性 质到线段的两个端点距离相等的点在线段的垂直平分线上 内 容判 定内 容作 用线段的垂直平分线上的点到线段的两个端点的距离相等 作

16、用见垂直平分线,得线段相等判断一个点是否在线段的垂直平分线上见学练优本课时练习课后作业课后作业1.3 线段的垂直平分线第一章 三角形的证明导入新课讲授新课当堂练习课堂小结 第1课时 线段的垂直平分线 1.理解线段垂直平分线的概念;2.掌握线段垂直平分线的性质定理及逆定理;(重点)3.能运用线段的垂直平分线的有关知识进行证明或计算.(难点)学习目标导入新课导入新课问题引入某区政府为了方便居民的生活,计划在三个住宅小区A、B、C之间修建一个购物中心,试问该购物中心应建于何处,才能使得它到三个小区的距离相等?ABC观察:已知点A与点A关于直线l 对称,如果线段AA沿直线l折叠,则点A与点A重合,AD

17、=AD,1=2=90,即直线l 既平分线段AA,又垂直线段AA.lAAD21(A)讲授新课讲授新课线段垂直平分线的性质一 我们把垂直且平分一条线段的直线叫作这条线段的垂直平分线.由上可知:线段是轴对称图形,线段的垂直平分线是它的对称轴.知识要点如图,直线l垂直平分线段AB,P1,P2,P3,是l 上的点,请你量一量线段P1A,P1B,P2A,P2B,P3A,P3B的长,你能发现什么?请猜想点P1,P2,P3,到点A 与点B 的距离之间的数量关系ABlP1P2P3探究发现P1A _P1BP2A _ P2BP3A _ P3B 作关于直线l 的轴反射(即沿直线l 对折),由于l 是线段AB的垂直平分

18、线,因此点A与点B重合.从而线段PA与线段PB重合,于是PA=PB.(A)(B)B APl活动探究 猜想:点P1,P2,P3,到点A 与点B 的距离分别相等 命题:线段垂直平分线上的点和这条线段两个端点的距离相等.由此你能得到什么结论?你能验证这一结论吗?如图,直线lAB,垂足为C,AC=CB,点P 在l 上求证:PA=PB证明:lAB,PCA=PCB又 AC=CB,PC=PC,PCA PCB(SAS)PA=PBPABlC验证结论微课-证明线段垂直平分线的性质 线段垂直平分线上的点到这条线段两个端点的距离相等.线段垂直平分线的性质定理:总结归纳例1 如图,在ABC中,ABAC20cm,DE垂直

19、平分AB,垂足为E,交AC于D,若DBC的周长为35cm,则BC的长为()A5cmB10cmC15cmD17.5cm典例精析C解析:DBC的周长为BCBDCD35cm,又DE垂直平分AB,ADBD,故BCADCD35cm.ACADDC20cm,BC352015(cm).故选C.方法归纳:利用线段垂直平分线的性质,实现线段之间的相互转化,从而求出未知线段的长练一练:1.如图所示,直线CD是线段AB的垂直平分线,点P为直线CD上的一点,且PA=5,则线段PB的长为()A.6 B.5 C.4 D.32.如图所示,在ABC中,BC=8cm,边AB的垂直平分线交AB于点D,交边AC于点E,BCE的周长等

20、于18cm,则AC的长是 .B10cmPABCD图图ABCDE图图定理:线段垂直平分线上的点到这条线段两个端点的距离相等.逆命题到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.它是真命题吗?你能证明吗?线段垂直平分线的判定二想一想:如果PA=PB,那么点P是否在线段AB的垂直平分线上呢?记得要分点P在线段AB上及线段AB外两种情况来讨论(1)当点P在线段AB上时,PA=PB,点P为线段AB的中点,显然此时点P在线段AB的垂直平分线上;(2)当点P在线段AB外时,如右图所示.PA=PB,PAB是等腰三角形.过顶点P作PCAB,垂足为点C,底边AB上的高PC也是底边AB上的中线.即 PC

21、AB,且AC=BC.直线PC是线段AB的垂直平分线,此时点P也在线段AB的垂直平分线上.微课-线段垂直平分线的逆命题 到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.线段垂直平分线的性质定理的逆定理:应用格式:PA=PB,点P 在AB 的垂直平分线上PAB作用:判断一个点是否在线段的垂直平分线上.总结归纳例2:已知:如图ABC中,AB=AC,O是ABC内一点,且OB=OC.求证:直线AO垂直平分线段BC.证明:AB=AC,A在线段BC的垂直平分线(到一条线段两个端点距离相等的点,在这条线段的垂直平分线上).同理,点O在线段BC的垂直平分线.直线AO是线段BC的垂直平分线(两点确定一条

22、直线).你还有其他证明方法吗?利用三角形的全等证明证明:延长AO交BC于点D,ABAC,AOAO,OBOC ,ABOACO(SSS).BAO=CAO,AB=AC,AOBCOBOC ,ODOD ,RTDBORTDCO(HL).BDCD.直线AO垂直平分线段BC.试一试:已知:如图,点E是AOB的平分线上一点,ECOA,EDOB,垂足分别为C,D,连接CD.求证:OE是CD的垂直平分线.ABOEDC证明:OE平分AOB,ECOA,EDOB,DE=CE(角平分线上的点到角的两边的距离相等).OE是CD的垂直平分线.当堂练习当堂练习1.如图所示,AC=AD,BC=BD,则下列说法正确的是 ()AAB垂

23、直平分CD;B CD垂直平分AB;CAB与CD互相垂直平分;DCD平分 ACB A2.已知线段AB,在平面上找到三个点D、E、F,使DADB,EAEB,FAFB,这样的点的组合共有种.无数3.下列说法:若点P、E是线段AB的垂直平分线上两点,则EAEB,PAPB;若PAPB,EAEB,则直线PE垂直平分线段AB;若PAPB,则点P必是线段AB的垂直平分线上的点;若EAEB,则经过点E的直线垂直平分线段AB其中正确的有 (填序号).4.如图,ABC中,AB=AC,AB的垂直平分线交AC于E,连接BE,AB+BC=16cm,则BCE的周长是 cm.ABCDE165.已知:如图,点C,D是线段AB外

24、的两点,且AC=BC,AD=BD,AB与CD相交于点O.求证:AO=BO.证明:AC=BC,AD=BD,点C和点D在线段AB的垂直平分线上,CD为线段AB的垂直平分线.又 AB与CD相交于点O,AO=BO.课堂小结课堂小结线段的垂直平分的性质和判定性 质到线段的两个端点距离相等的点在线段的垂直平分线上 内 容判 定内 容作 用线段的垂直平分线上的点到线段的两个端点的距离相等 作 用见垂直平分线,得线段相等判断一个点是否在线段的垂直平分线上见学练优本课时练习课后作业课后作业小魔方站作品小魔方站作品 盗版必究盗版必究语文语文附赠 中高考状元学习方法 前前 言言 高考状元是一个特殊的群体,在许多高考

25、状元是一个特殊的群体,在许多人的眼中,他们就如浩瀚宇宙里璀璨夺目人的眼中,他们就如浩瀚宇宙里璀璨夺目的星星那样遥不可及。但实际上他们和我的星星那样遥不可及。但实际上他们和我们每一个同学都一样平凡而普通,但他们们每一个同学都一样平凡而普通,但他们有是不平凡不普通的,他们的不平凡之处有是不平凡不普通的,他们的不平凡之处就是在学习方面有一些独到的个性,又有就是在学习方面有一些独到的个性,又有着一些共性,而这些对在校的同学尤其是着一些共性,而这些对在校的同学尤其是将参加高考的同学都有一定的借鉴意义。将参加高考的同学都有一定的借鉴意义。青春风采北京市文科状元北京市文科状元 阳光女孩阳光女孩-何旋何旋 高

26、考总分:高考总分:692分分(含含20分加分分加分)语文语文131分分 数学数学145分分英语英语141分分 文综文综255分分毕业学校:北京二中毕业学校:北京二中报考高校:报考高校:北京大学光华管理学北京大学光华管理学院院来自北京二中,高考成绩672分,还有20分加分。“何旋给人最深的印象就是她的笑声,远远的就能听见她的笑声。”班主任吴京梅说,何旋是个阳光女孩。“她是学校的摄影记者,非常外向,如果加上20分的加分,她的成绩应该是692。”吴老师说,何旋考出好成绩的秘诀是心态好。“她很自信,也很有爱心。考试结束后,她还问我怎么给边远地区的学校捐书”。班主任:我觉得何旋今天取得这样的成绩,我觉得

27、,很重要的是,何旋是土生土长的北京二中的学生,二中的教育理念是综合培养学生的素质和能力。我觉得何旋,她取得今天这么好的成绩,一个来源于她的扎实的学习上的基础,还有一个非常重要的,我觉得特别想提的,何旋是一个特别充满自信,充满阳光的这样一个女孩子。在我印象当中,何旋是一个最爱笑的,而且她的笑特别感染人的。所以我觉得她很阳光,而且充满自信,这是她突出的这样一个特点。所以我觉得,这是她今天取得好成绩当中,心理素质非常好,是非常重要的。高考总分高考总分:711分分毕业学校毕业学校:北京八中北京八中语文语文139分分 数学数学140分分英语英语141分分 理综理综291分分报考高校:报考高校:北京大学光华管理学院北京大学光华管理学院北京市理科状元杨蕙心北京市理科状元杨蕙心

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|